精英家教网 > 高中数学 > 题目详情
已知2sinx=
2
,且0≤x≤2π,则x的值为
 
分析:由已知的等式两边同时除以2,得到sinx的值,然后根据x的范围,利用特殊角的三角函数值即可求出x的值.
解答:解:由2sinx=
2

得到sinx=
2
2
,又0≤x≤2π,
则x=
π
4
4

故答案为:
π
4
4
点评:此题考查了特殊角的三角函数值,牢记特殊角的三角函数值是解本题的关键,做题时注意角度x的范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=2sinx的定义域为[a,b],值域为[-2,1],则b-a的值不可能是
①③④
①③④
(填序号).
π
2
;②π;③
2
;④2π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanx=2,则
2sinx-3cosx4sinx-9cosx
=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
2
sinx+
2
cosx=
8
5
,且
π
4
<x<
π
2
,求
sin2x(1+tanx)
1-tanx
的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知tanx=2,则
2sinx-3cosx
4sinx-9cosx
=______.

查看答案和解析>>

同步练习册答案