精英家教网 > 高中数学 > 题目详情

已知函数
(1)若,判断函数上的单调性并用定义证明;
(2)若函数上是增函数,求实数的取值范围.

(1)函数上是增函数.(2)

解析试题分析: (1)由分离常数法判断函数的单调性,由定义法来证明上的单调性注意通分后分解因式,判定各因式的符号.
(2)设增函数知,然后分解因式判定含有因式的符号
试题解析: (1)当时,,            1分
,则
                3分

>0,                                    5分
,∴函数上是增函数.         6分
(2)设,由上是增函数,有
成立,       8分
,∴
必须                         11分
所以,实数的取值范围是                              12分
考点:函数单调性的性质证明过程及其应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数.
(Ⅰ) 若函数上为增函数, 求实数的取值范围;
(Ⅱ) 求证:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是实数,
(1)试确定的值,使成立;
(2)求证:不论为何实数,均为增函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数的值域为,求实数的取值范围;
(2)当时,函数恒有意义,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若非零函数对任意实数均有,且当
(1)求证:
(2)求证:为R上的减函数;
(3)当时, 对恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且
(1)求的值,并确定函数的定义域;
(2)用定义研究函数范围内的单调性;
(3)当时,求出函数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设定义在上的奇函数
(1).求值;(4分)
(2).若上单调递增,且,求实数的取值范围.(6分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在上的奇函数,且上是减函数,解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若在其定义域内为单调递增函数,求实数的取值范围;
(2)设,且,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案