精英家教网 > 高中数学 > 题目详情
已知椭圆C:=1(a>0,b>0)的离心率与双曲线=1的一条渐近线的斜率相等以原点为圆心,椭圆的短半轴长为半径的圆与直线sin·x+cos·y-l=0相切(为常数).
(1)求椭圆C的方程;
(2)若过点M(3,0)的直线与椭圆C相交TA,B两点,设P为椭圆上一点,且满足(O为坐标原点),当时,求实数t取值范围.
(1) ;(2)

试题分析:(1)此问主要考察椭圆与双曲线的性质,椭圆的离心率与双曲线的性质相等,则,利用直线与圆相切得到圆心到直线的距离等于半径,解出,然后利用,解出,得到方程;
(2)典型的直线与圆锥曲线相交问题,首先方程联立,写出根与系数的关系,代入向量相等的坐标表示,得出点坐标,利用点在椭圆上,代入方程,然后利用,利用弦长公式,得到的范围,与之前得到的的关系式,求出的范围.
试题解析:(I)由题意知双曲线的一渐近线斜率值为

因为,所以.故椭圆的方程为    5分
(Ⅱ)设?方程为?
?整理得
,解得
        7分
  则,
, 由点在椭圆上,代入椭圆方程得
①         9分
又由,即

代入得
, ∴②      11分
由①,得,联立②,解得
        13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆C∶=1(a>b>0)过点(0,4),离心率为.
(1)求C的方程;
(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两个焦点坐标分别是,并且经过点,求它的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若△ABC的个顶点坐标A(-4,0)、B(4,0),△ABC的周长为18,则顶点C的轨迹方程为(  )
A.
x2
25
+
y2
9
=1
B.
y2
25
+
x2
9
=1
(y≠0)
C.
x2
16
+
y2
9
=1
(y≠0)
D.
x2
25
+
y2
9
=1
(y≠0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若动点M到定点F1(0,-1)、F2(0,1)的距离之和为2,则点M的轨迹为(  )
A.椭圆B.直线F1F2
C.线段F1F2D.直线F1F2的垂直平分线

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以椭圆的焦点为顶点,以该椭圆的顶点为焦点的双曲线方程是         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,椭圆上的点M与椭圆右焦点的连线与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.

(1)求椭圆的离心率;
(2)过且与AB垂直的直线交椭圆于P、Q,若的面积是 ,求此时椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若抛物线y2=2px的焦点与椭圆的右焦点重合,则该抛物线的准线方程为___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从椭圆短轴的一个端点看长轴的两个端点的视角为,那么此椭圆的离心率为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案