精英家教网 > 高中数学 > 题目详情
已知函数f(x)定义域为[O,1],且同时满足:
①对于任意x∈[0,1],总有f(x)≥3;
②f(1)=4;
③若x1≥0,x2≥0,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)-3.
(I)求f(0)的值;
(II)求函数f(x)的最大值;
(III)设数列{an}的前n项和为Sn,满足a1=1,Sn=-(an-3),n∈N+.求证:f(a1)+f(a2)+…+f(an)<3n+
【答案】分析:(I)利用赋值法,令x1=x2=0,结合f(x)≥3对一切x∈[0,1]恒成立,我们可以求出f(0);
(Ⅱ)先证明f(x)在[0,1]上递增,利用f(1)=4,即可求得f(x)的最大值为;
(Ⅲ)先求数列{an}的通项,再证明f(an)≤3+,利用叠加,即可证得结论.
解答:(Ⅰ)解:令x1=x2=0,则有f(0)≥2f(0)-3,即f(0)≤3
又对任意任意x∈[0,1],总有f(x)≥3,∴f(0)=3 (3分)
(Ⅱ)解:任取x1,x2∈[0,1],x1<x2,则
f(x2)=f[x1+(x2-x1)]≥f(x1)+f(x2-x1)-3
∵0<x2-x1≤1,∴f(x2-x1)≥3
∴f(x2)≥f(x1)+3-3
∴f(x2)≥f(x1),即f(x)在[0,1]上递增.
∴当x∈[0,1]时,f(x)≤f(1)=4,∴f(x)的最大值为4 (6分)
(Ⅲ)证明:当n>1时,an=Sn-Sn-1=-(an-3)+(an-1-3),
(7分)
∴数列{an}是以1为首项,公比为的等比数列,
(8分)
∵f(1)=f[3n-1×]=f[+(3n-1-1)×]≥f()+f[(3n-1-1)×]-3
即 4≥3n-1f()-3n+3 (10分)
∴f()≤=3+
即f(an)≤3+,(11分)
∴f(a1)+f(a2)+…+f(an)≤(3+)+…+(3+)=3n+-<3n+
∴原不等式成立 (14分)
点评:本题考查抽象函数,考查函数的单调性,考查函数的最值,考查数列与函数的关系,考查不等式的证明,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)定义在(-1,1)上,对于任意的x,y∈(-1,1),有f(x)+f(y)=f(
x+y
1+xy
)
,且当x<0时,f(x)>0.
(Ⅰ)验证函数f(x)=ln
1-x
1+x
是否满足这些条件;
(Ⅱ)判断这样的函数是否具有奇偶性和其单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义在R上,并且对于任意实数x,y都有f(x+y)=f(x)+f(y)成立,且x≠y时,f(x)≠f(y),x>0时,有f(x)>0.
(1)判断f(x)的奇偶性;
(2)若f(1)=1,解关于x的不等式f(x)-f(
1x-1
)≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•连云港二模)已知函数f(x)定义在正整数集上,且对于任意的正整数x,都有f(x+2)=2f(x+1)-f(x),且f(1)=2,f(3)=6,则f(2009)=
4018
4018

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义在区间(-1,1)上,f(
1
2
)=-1,且当x,y∈(-1,1)时,恒有f(x)-f(y)=f(
x-y
1-xy
),又数列{an}满足:a1=
1
2
,an+1=
2an
1+
a
2
n

(I)证明:f(x)在(-1,1)上为奇函数;
(II)求f(an)关于n的函数解析式;
(III)令g(n)=f(an)且数列{an}满足bn=
1
g(n)
,若对于任意n∈N+,都有b1+b2+…+bnt2-3t恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义在R上,对任意的x∈R,f(x+1001)=
2
f(x)
+1
,已知f(11)=1,则f(2013)=
 

查看答案和解析>>

同步练习册答案