精英家教网 > 高中数学 > 题目详情

已知an=数学公式n∈N*求证:an<1.

证明:(1)当n=1时,a1=<1,不等式成立.
(2)假设n=k(k≥1)时,不等式成立,即ak=<1
亦即1+22+32+…+k2<(k+1)k
当n=k+1时:ak+1===()k<1.
所以n=k+1时,不等式也成立.
由(1)、(2)知,对一切n∈N*,不等式都成立.
即an<1得证.
分析:首先分析题目已知an=求证:an<1.考虑到可以应用数学归纳法求解,首先验证当n=1时,不等式成立,再假设n=k(k≥1)时,不等式成立,推得当n=k+1时不等式也成立.即得证.
点评:此题主要考查由数学归纳法证明不等式,数学归纳法在高考中属于重要的考点,应用广泛,需要同学们灵活掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设A(x1,y1),B(x2,y2)是函数f(x)=
1
2
+log2
x
1-x
的图象上两点,且
OM
=
1
2
(
OA
+
OB
)
,O为坐标原点,已知点M的横坐标为
1
2

(Ⅰ)求证:点M的纵坐标为定值;
(Ⅱ)定义定义Sn=
n-1
i=1
f(
i
n
)=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求S2011
(Ⅲ)对于(Ⅱ)中的Sn,设an=
1
2Sn+1
(n∈N*)
.若对于任意n∈N*,不等式kan3-3an2+1>0恒成立,试求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区一模)已知集合Sn={X|X=(x1x2,…,xn),xiN*,i=1,2,…,n} (n≥2).对于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Sn,定义
AB
=(b1-a1b2-a2,…,bn-an)
;λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A与B之间的距离为d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)当n=5时,设A=(1,2,1,2,a5),B=(2,4,2,1,3).若d(A,B)=7,求a5
(Ⅱ)(ⅰ)证明:若A,B,C∈Sn,且?λ>0,使
AB
BC
,则d(A,B)+d(B,C)=d(A,C);
(ⅱ)设A,B,C∈Sn,且d(A,B)+d(B,C)=d(A,C).是否一定?λ>0,使
AB
BC
?说明理由;
(Ⅲ)记I=(1,1,…,1)∈Sn.若A,B∈Sn,且d(I,A)=d(I,B)=p,求d(A,B)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知{an}是正数组成的数列,a1=1,且点数学公式在函数y=x2+1的图象上.数列{bn}满足b1=0,bn+1=bn+3an(n∈N*).
(I)求数列{an},{bn}的通项公式;
(II)若cn=anbncosnπ(n∈N*),求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省黄冈中学高三(上)10月月考数学试卷(文科)(解析版) 题型:解答题

已知{an}是正数组成的数列,a1=1,且点在函数y=x2+1的图象上.数列{bn}满足b1=0,bn+1=bn+3an(n∈N*).
(I)求数列{an},{bn}的通项公式;
(II)若cn=anbncosnπ(n∈N*),求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省“鄂南高中、华师一附中、黄冈中学、黄石二中、荆州中学、襄樊四中、襄樊五中、孝感高中”八校高三第二次联考数学试卷(文科))(解析版) 题型:解答题

已知{an}是正数组成的数列,a1=1,且点在函数y=x2+1的图象上.数列{bn}满足b1=0,bn+1=bn+3an(n∈N*).
(I)求数列{an},{bn}的通项公式;
(II)若cn=anbncosnπ(n∈N*),求数列{cn}的前n项和Sn

查看答案和解析>>

同步练习册答案