精英家教网 > 高中数学 > 题目详情
图①是一个正方体的表面展开图,MN和PQ是两条面对角线,请在图(2)的正方体中将MN,PQ画出来,并就这个正方体解答下列各题:
(1)求MN和PQ所成角的大小;
(2)求四面体M—NPQ的体积与正方体的体积之比;
(3)求二面角M—NQ—P的大小。
(Ⅰ)60°(Ⅱ)1:6(Ⅲ)60°
(1)如图②,作出MN、PQ

∵PQ∥NC,又△MNC为正三角形
∴∠MNC=60°
∴PQ与MN成角为60°


即四面体M—NPQ的体积与正方体的体积之比为1:6
(3)连结MA交PQ于O点,则MO⊥PQ
又NP⊥面PAQM,∴NP⊥MO,则MO⊥面PNQ
过O作OE⊥NQ,连结ME,则ME⊥NQ
∴∠MEO为二面角M—NQ—P的平面角
在Rt△NMQ中,ME·NQ=MN·MQ
设正方体的棱长为a


∴∠MEO=60°
即二面角M—NQ—P的大小为60°。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知正四棱柱ABCDA1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点BB1C的垂线交侧棱CC1于点E,交B1C于点F
(1)求证:A1C⊥平面BDE
(2)求A1B与平面BDE所成角的正弦值。
(3)设F是CC1上的动点(不包括端点C),求证:△DBF是锐角三角形。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一四棱锥P-ABCD的三视图如下,E是侧棱PC上的动点。
(Ⅰ)求四棱锥P-ABCD的体积;
(Ⅱ)是否不论点E在何位置,都有BD⊥AE?证明你的结论;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在棱长为的正方体中,为棱的中点.
(Ⅰ)求证:平面;   (Ⅱ)求与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱ABC—A1B1C1中,各棱长都相等,D、E分别为AC1,BB1的中点。(1)求证:DE∥平面A1B1C1;(2)求二面角A1—DE—B1的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,正方体的棱长为2EAB的中点.(Ⅰ)求证:(Ⅱ)求异面直线BD1CE所成角的余弦值;(Ⅲ)求点B到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

三棱锥P—ABC中,△PAC是边长为4的等边三角形,△ABC为等腰直角三角形,∠ACB=90°,平面PAC⊥平面ABC,D、E分别为AB、PB的中点.
(1)求证:AC⊥PD;
(2)求二面角E—AC—B的正切值;


 
(3)求三棱锥P—CDE与三棱锥P—ABC的体积之比.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图a—l—是120°的二面角,A,B两点在棱上,AB=2,D在内,三角形ABD是等腰直角三角形,∠DAB=90°,C在内,ABC是等腰直角三角形∠ACB=
(I)       求三棱锥D—ABC的体积;
(2)求二面角D—AC—B的大小;     
(3)求异面直线AB、CD所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)当你手握直角三角板,其斜边保持不动,将其直角顶点提起一点,则直角在平面内的正投影是锐角、直角 还是钝角?
(2)根据第(1)题,你能猜想某个角在一个平面内的正投影一定大于这个角吗?如果正确,请证明;如果错误,则利用下列三角形举出反例:△ABC中,
,以∠BAC为例。

查看答案和解析>>

同步练习册答案