精英家教网 > 高中数学 > 题目详情
如图,在正三棱柱ABC—A1B1C1中,各棱长都相等,D、E分别为AC1,BB1的中点。(1)求证:DE∥平面A1B1C1;(2)求二面角A1—DE—B1的大小。
(Ⅰ)证明见解析(Ⅱ)
(1)取A1C1中点F,连结B1F,DF,∵D1E分别为AC1和BB1的中点,DF∥AA1
DF=(1/2)AA1,B1E∥AA1,B1E=(1/2)AA1,∴DF∥B1E,DF=B1E,∴DEB1F为平行四边形,∴DE∥B1F,又B1F在平面A1B1C1内,DE不在平面A1B1C1,∴DE∥平面A1B1C1
(2)连结A1D,A1E,在正棱柱ABC—A1B1C1中,因为平面A1B1C1⊥平面ACC1A1,A1C1是平面A1B1C1与平面ACC1A1的交线,又因为B1F在平面A1B1C1内,且B1F⊥A1C1,,所以B1F⊥平面ACC1A1,又DE∥B1F,所以DE⊥平面ACC1A1所以∠FDA1为二面角A1—DE—B1的平面角。并且∠FDA1=(1/2)∠A1DC1,设正三棱柱的棱长为1,因为∠AA1C1=900,D是AC1的中点,所以即为所求的二面角的度数。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四面体中,,点分别是 的中点.

求证:(1)直线
(2)平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面ACB⊥平面BCD,∠CAB=∠CBD=900, ∠BDC=600,BC=6,AB=AC.
(Ⅰ)求证:平面ABD⊥平面ACD;(Ⅱ)求二面角A—CD—B的平面角的正切值;
(Ⅲ)设过直线AD且与BC平行的平面为,求点B到平面的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知:在菱形ABCD中,∠DAB=60°,PA⊥底面ABCD,PA=AB=2,E,F分别是AB与PD的中点.
(1)求证:PC⊥BD;
(2)求证:AF//平面PEC;
(3)求二面角P—EC—D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直三棱柱ABCA1B1C1中,AB=BC=BB1DAC的中点,


 
  (1)求证:B1C∥平面A1BD

  (2)若AC1⊥平面A1BD,二面角BA1C1D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是直角梯形,,且,侧面底面是等边三角形.
(1)求证:
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD是矩形,面ABCD,过BC作平面BCFE交AP于E,
交DP于F,求证:四边形BCFE是梯形

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

图①是一个正方体的表面展开图,MN和PQ是两条面对角线,请在图(2)的正方体中将MN,PQ画出来,并就这个正方体解答下列各题:
(1)求MN和PQ所成角的大小;
(2)求四面体M—NPQ的体积与正方体的体积之比;
(3)求二面角M—NQ—P的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”。在一个正方体中,由两个顶点确定的直线与顶点组成的平面(相同的平面算一个)构成的“正交线面对”的个数是
A.24B.36C.44D.56

查看答案和解析>>

同步练习册答案