精英家教网 > 高中数学 > 题目详情
如图,已知正四棱柱ABCDA1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点BB1C的垂线交侧棱CC1于点E,交B1C于点F
(1)求证:A1C⊥平面BDE
(2)求A1B与平面BDE所成角的正弦值。
(3)设F是CC1上的动点(不包括端点C),求证:△DBF是锐角三角形。
(1)见解析
(2)
(3)见解析

(1)证明:由正四棱柱性质知A1B1⊥平面BCC1B1,A1A⊥平面ABCD,
所以B1C、AC分别是A1C在平面CC1B1B、平面ABCD上的射影
∵ B1C⊥BE, AC⊥BD, ∴A1CBE , A1CBD,   (2分)
A1C⊥平面BDE    (4分)。 (直接指出根据三垂线定理得“A1CBE , A1CBD”而推出结论的不扣分)
(2)解:以DADCDD1所在直线分别为xyz轴,建立坐标系,则,∴  (6分)
            (7分)
A1C平面BDEK
由(1)可知,∠A1BKA1B与平面BDE所成角,(8分)
      (9分)
(3)证明:设点F的坐标为(0, 2, z)(0<z≤4), 则
又|DB|=,故△DBF是等腰三角形,要证明它为锐角三角形,只需证明其顶角∠DFB为锐角则可。               (11分)
由余弦定理得cos∠DFB=
∴∠DFB为锐角,             (13分)
即不论点F为CC1上C点除外的任意一点, △DFB总是锐角三角形.(14分)
说明: 若没有说明三角形为等腰三角形而只证明一个角是锐角,或只证明底角是锐角的“以偏概全”情况应扣2分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

右图为一简单组合体,其底面ABCD为正方形,平面
,且="2" .
(1)答题卡指定的方框内已给出了该几何体的俯视图,请在方框
内画出该几何体的正(主)视图和侧(左)视图;
(2)求四棱锥B-CEPD的体积;
(3)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图6,正方形ABCD所在平面与三角形CDE所在平面ABCD相交于CD,

平面CDE,且.
(1)求证:平面
(2)求凸多面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直三棱柱中,ACB=90°, 的中点,的中点。
(1)求证:MN∥平面 ;
(2)求点到平面BMC的距离;
(3)求二面角­1的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四面体中,,点分别是 的中点.

求证:(1)直线
(2)平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知ABCD是矩形,EF分别是线段ABBC的中点,ABCD.  (1)证明:PFFD
(2)在PA上找一点G,使得EG∥平面PFD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知长方体的全面积为,其条棱的长度之和为,则这个长方体的一条
对角线长为(    ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四面体ABCD中,AB=AD=,BC=CD=3,AC=,BD=2.
(1)平面ABD与平面BCD是否垂直?证明你的结论;(2)求二面角A-CD-B的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

图①是一个正方体的表面展开图,MN和PQ是两条面对角线,请在图(2)的正方体中将MN,PQ画出来,并就这个正方体解答下列各题:
(1)求MN和PQ所成角的大小;
(2)求四面体M—NPQ的体积与正方体的体积之比;
(3)求二面角M—NQ—P的大小。

查看答案和解析>>

同步练习册答案