精英家教网 > 高中数学 > 题目详情
如图6,正方形ABCD所在平面与三角形CDE所在平面ABCD相交于CD,

平面CDE,且.
(1)求证:平面
(2)求凸多面体的体积.
(1)见解析(2)
(1)证明:∵平面平面

在正方形中,
,∴平面
,∴平面
(2)在中,

过点于点
平面平面
.∵
平面


又正方形的面积
 

故所求凸多面体的体积为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,平面平面,四边形都是直角梯形,

(Ⅰ)证明:四点共面;
(Ⅱ)设,求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为a的正方体ABCD—A1B1C1D1中,M、N分别是AA1、D1C1的中点,过D、M、N三点的平面与正方体的下底面相交于直线l;

(1)画出直线l;
(2)设l∩A1B1=P,求PB1的长;
(3)求D到l的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
(注意:在试题卷上作答无效)
四棱锥中,底面为矩形,侧面底面
(Ⅰ)证明:
(Ⅱ)设侧面为等边三角形,求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正四棱柱ABCDA1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点BB1C的垂线交侧棱CC1于点E,交B1C于点F
(1)求证:A1C⊥平面BDE
(2)求A1B与平面BDE所成角的正弦值。
(3)设F是CC1上的动点(不包括端点C),求证:△DBF是锐角三角形。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在直角梯形ABCP中,AB=BC=3,AP=7,CD⊥AP,现将沿折线CD折成60°的二面角P—CD—A,设E,F,G分别是PD,PC,BC的中点。
(I)求证:PA//平面EFG;
(II)若M为线段CD上的一个动点,问当M在什么位置时,MF与平面EFG所成角最大。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以一个正方体顶点为顶点的四面体共有(   ).
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图a—l—是120°的二面角,A,B两点在棱上,AB=2,D在内,三角形ABD是等腰直角三角形,∠DAB=90°,C在内,ABC是等腰直角三角形∠ACB=
(I)       求三棱锥D—ABC的体积;
(2)求二面角D—AC—B的大小;     
(3)求异面直线AB、CD所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面是矩形,
的中点,的中点。
(Ⅰ)求异面直线所成的角;(Ⅱ)求二面角的大小。

查看答案和解析>>

同步练习册答案