精英家教网 > 高中数学 > 题目详情
如图,在棱长为a的正方体ABCD—A1B1C1D1中,M、N分别是AA1、D1C1的中点,过D、M、N三点的平面与正方体的下底面相交于直线l;

(1)画出直线l;
(2)设l∩A1B1=P,求PB1的长;
(3)求D到l的距离.

(1)见解析 (2)PB1=a  (3)

(1)连结DM并延长交D1A1的延长线于Q.连结NQ,则NQ即为所求的直线l.
(2)设QN∩A1B1=P,△A1MQ≌△MAD,∴A1Q=AD=A1D1,A1是QD1的中点.
∴A1P=D1N=.∴PB1=a.
(3)作D1H⊥l于H,连结DH,可证明l⊥平面DD1H,则DH⊥l,则DH的长就是D到l的距离.
在Rt△QD1N中,两直角边D1N=,D1Q=2a,斜边QN=,∴D1H·QN=D1N·D1Q,即D1H=,DH=,∴D1到l的距离为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

右图为一简单组合体,其底面ABCD为正方形,平面
,且="2" .
(1)答题卡指定的方框内已给出了该几何体的俯视图,请在方框
内画出该几何体的正(主)视图和侧(左)视图;
(2)求四棱锥B-CEPD的体积;
(3)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图6,正方形ABCD所在平面与三角形CDE所在平面ABCD相交于CD,

平面CDE,且.
(1)求证:平面
(2)求凸多面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直三棱柱中,ACB=90°, 的中点,的中点。
(1)求证:MN∥平面 ;
(2)求点到平面BMC的距离;
(3)求二面角­1的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知ABCD是矩形,EF分别是线段ABBC的中点,ABCD.  (1)证明:PFFD
(2)在PA上找一点G,使得EG∥平面PFD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示,在正三棱柱中,底面边长为,侧棱长为是棱的中点.

 

 
(Ⅰ)求证:平面

(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图三棱柱中,侧棱与底面成角,⊥底面⊥侧面,且则顶点到棱的距离是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分.)
如图(20)图,为平面,AB=5,A,B在棱l上的射影分别为A′,B′,AA′=3,BB′=2.若二面角的大小为,求:
(Ⅰ)点B到平面的距离;
(Ⅱ)异面直线lAB所成的角(用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知上的点.
(1)当
(2)当二面角的大小为的值.

查看答案和解析>>

同步练习册答案