精英家教网 > 高中数学 > 题目详情

【题目】已知 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| |= ,求证:
(2)设 =(0,1),若 + = ,求α,β的值.

【答案】
(1)解:由 =(cosα,sinα), =(cosβ,sinβ),

=(cosα﹣cosβ,sinα﹣sinβ),

=2﹣2(cosαcosβ+sinαsinβ)=2,

得cosαcosβ+sinαsinβ=0.

所以 .即


(2)解:由

,①2+②2得:

因为0<β<α<π,所以0<α﹣β<π.

所以

代入②得:

因为 .所以

所以,


【解析】(1)由给出的向量 的坐标,求出 的坐标,由模等于 列式得到cosαcosβ+sinαsinβ=0,由此得到结论;(2)由向量坐标的加法运算求出 + ,由 + =(0,1)列式整理得到 ,结合给出的角的范围即可求得α,β的值.
【考点精析】根据题目的已知条件,利用两角和与差的余弦公式和两角和与差的正弦公式的相关知识可以得到问题的答案,需要掌握两角和与差的余弦公式:;两角和与差的正弦公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中,真命题的是(
A.已知f(x)=sin2x+ ,则f(x)的最小值是2
B.已知数列{an}的通项公式为an=n+ ,则{an}的最小项为2
C.已知实数x,y满足x+y=2,则xy的最大值是1
D.已知实数x,y满足xy=1,则x+y的最小值是2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分16分)已知数列 )满足 其中

1)当时,求关于的表达式,并求的取值范围;

2)设集合

,求证:

是否存在实数 ,使 都属于?若存在,请求出实数 ;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2﹣ax+b.
(1)若不等式f(x)<0的解集是{x|2<x<3},求不等式bx2﹣ax+1>0的解集;
(2)当b=3﹣a时,对任意的x∈(﹣1,0]都有f(x)≥0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取50名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100],得到如图所示的频率分布直方图.

(1)若该校高一年级共有学生1000人,试估计成绩不低于60分的人数;
(2)为了帮助学生提高数学成绩,学校决定在随机抽取的50名学生中成立“二帮一”小组,即从成绩[90,100]中选两位同学,共同帮助[40,50)中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙恰好被安排在同一小组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x,g(x)=ax+2(a>0),若x1∈[﹣1,2],x2∈[﹣1,2],使得f(x1)=g(x2),则实数a的取值范围是(
A.
B.
C.(0,3]
D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个体服装店经营某种服装,在某周内获纯利y(元)与该周每天销售这种服装件数x之间的一组数据关系如下表

x

3

4

5

6

7

8

9

y

66

69

73

81

89

90

91


(1)求纯利y与每天销售件数x之间的回归方程;
(2)若该周内某天销售服装20件,估计可获纯利多少元?
已知: x =280, y =45309, xiyi=3487, = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+x2 (a为实常数).
(1)当a=﹣4时,求函数f(x)的单调区间;
(2)当x∈[1,e]时,讨论方程f(x)=0根的个数;
(3)若 a>0,且对任意的x1 , x2∈[1,e],都有|f(x1)﹣f(x2)| ,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知☉O1与☉O2相交于A,B两点,过点A作☉O1的切线交☉O2于点C,过点B作两圆的割线,分别交☉O1、☉O2于点D、E,DE与AC相交于点P.若AD是☉O2的切线,且PA=6,PC=2,BD=9,则AB的长为____.

查看答案和解析>>

同步练习册答案