分析 (I)曲线C:ρ=4cosθ,把ρ2=x2+y2,x=ρcosθ代入即可化为直角坐标方程.
(II)把直线l:$\left\{\begin{array}{l}{x=2+tcosα}\\{y=1+tsinα}\end{array}\right.$ (t为参数,0≤α<π)代入曲线C的直角坐标方程可得:t2+2tsinα-3=0,由$\overrightarrow{AP}$=2$\overrightarrow{PB}$,可得t1=-2t2.再利用根与系数的关系及其三角函数基本关系式即可得出.
解答 解:(I)曲线C:ρ=4cosθ,即ρ2=4ρcosθ,
可得:x2+y2=4x.
(II)把直线l:$\left\{\begin{array}{l}{x=2+tcosα}\\{y=1+tsinα}\end{array}\right.$ (t为参数,0≤α<π)代入曲线C的直角坐标方程可得:t2+2tsinα-3=0,
∴t1+t2=-2sinα,t1t2=-3.
∵$\overrightarrow{AP}$=2$\overrightarrow{PB}$,∴t1=-2t2.
联立可得:sin2α=$\frac{3}{8}$.
∴$\frac{si{n}^{2}α}{si{n}^{2}α+co{s}^{2}α}$=$\frac{ta{n}^{2}α}{ta{n}^{2}α+1}$=$\frac{3}{8}$,解得tan2α=$\frac{3}{5}$.
∵0≤α<π,
∴tanα=$±\frac{\sqrt{15}}{5}$.
点评 本题考查了直角坐标与极坐标的互化、三角函数的基本关系式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 日 期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
| 温差x(℃) | 10 | 11 | 13 | 12 | 8 |
| 发芽数y(颗) | 23 | 25 | 30 | 26 | 16 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com