精英家教网 > 高中数学 > 题目详情
已知点B(-1,0),C(1,0),P是平面上一动点,且满足|
PC
|•|
BC
|=|
PB
|•|
CB
|

(Ⅰ)求动点P的轨迹方程;
(Ⅱ)直线l过点(-4,4
3
)且与动点P的轨迹交于不同两点M、N,直线OM、ON(O是坐标原点)的倾斜角分别为α、β.求α+β的值.
分析:(Ⅰ)设P(x,y),则
PC
=(1-x,-y),
BC
=(2,0),
PB
=(-1-x,-y),
CB
=(-2,0),由|
PC
|•|
BC
|=|
PB
|•|
CB
|
,知
(1-x)2+(-y)2
•2=2•(1+x)
,从而得到动点P的轨迹方程.
(Ⅱ)由于直线l过点(-4,4
3
),且与抛物线y2=4x交于两个不同点,所以直线l 的斜率一定存在,且不为0.由此能推导出α +β=
π
6
α+β=
6
解答:解:(Ⅰ)设P(x,y),则
PC
=(1-x,-y),
BC
=(2,0),
PB
=(-1-x,-y),
CB
=(-2,0),
|
PC
|•|
BC
|=|
PB
|•|
CB
|

(1-x)2+(-y)2
•2=2•(1+x)

化简得动点P的轨迹方程是:y2=4x.
(Ⅱ)由于直线l过点(-4,4
3
),且与抛物线y2=4x交于两个不同点,所以直线l 的斜率一定存在,且不为0.设l:y-4
3
=k(x+4)

y-4
3
=k(x+4)
y2=4x
,得ky2-4y+(16k+16
3
) =0

△=16-4k(16k+16
3
) >0

∵0<α+β<2π.∴α +β=
π
6
α+β=
6
点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与抛物线的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,设点P(x1,y1)、Q(x2,y2),定义:d(P,Q)=|x1-x2|+|y1-y2|. 已知点B(1,0),点M为直线x-2y+2=0上的动点,则使d(B,M)取最小值时点M的坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点B(1,0)是向量
a
的终点,向量
b
c
均以原点O为起点,且
b
=(-3,-4),
c
=(1,1)与向量
a
的关系为
a
=3
b
-2
c
,求向量
a
的起点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点B(-1,0),C(1,0),P是平面上一动点,且满足|
PC
|•|
BC
|=
PB
CB

(1)求点P的轨迹C对应的方程;
(2)已知点A(m,2)在曲线C上,过点A作曲线C的两条弦AD,AE,且AD,AE的斜率k1、k2满足k1•k2=2.求证:直线DE过定点,并求出这个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点B(-1,0),C(1,0),P是平面上一动点,且满足|
PC
|•|
BC
|=
PB
CB

(Ⅰ)求点P的轨迹C对应的方程;
(Ⅱ)已知点A(m,2)在曲线C上,过点A作曲线C的两条弦AD和AE,且AD⊥AE,判断:直线DE是否过定点?并证明你的结论.

查看答案和解析>>

同步练习册答案