【题目】已知抛物线
的顶点为
,焦点
.
![]()
(1)求抛物线
的方程;
(2)过
作直线交抛物线于
、
两点.若直线
、
分别交直线
:
于
、
两点,求
的最小值.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=aex,g(x)=lnx-lna,其中a为常数,且曲线y=f(x)在其与y轴的交点处的切线记为l1,曲线y=g(x)在其与x轴的交点处的切线记为l2,且l1∥l2.
(1)求l1,l2之间的距离;
(2)若存在x使不等式
成立,求实数m的取值范围;
(3)对于函数f(x)和g(x)的公共定义域中的任意实数x0,称|f(x0)-g(x0)|的值为两函数在x0处的偏差.求证:函数f(x)和g(x)在其公共定义域内的所有偏差都大于2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知p:函数f(x)在R上是增函数,f(m2)<f(m+2)成立;q:方程
1(m∈R)表示双曲线.
(1)若p为真命题,求m的取值范围;
(2)若p∨q为真,p∧q为假,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系
中,曲线
的参数方程为
(
为参数),以原点为极点,
轴为非负半轴建立极坐标系,直线
的极坐标方程为
.
(1)求直线
的直角坐标方程和曲线
的普通方程;
(2)求直线
与曲线
交于两点
,线段
的中点的横坐标为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是边长为2的正方形,平面
平面
,且
,
是线段
的中点,过
作直线
,
是直线
上一动点.
![]()
(1)求证:
;
(2)若直线
上存在唯一一点
使得直线
与平面
垂直,求此时二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆
的离心率为
,过椭圆右焦点
作两条互相垂直的弦
与
.当直线
斜率为0时,
.
![]()
(1)求椭圆的方程;
(2)求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点P的极坐标为
,直线l的极坐标方程为ρcos
=a,且点P在直线l上.
(1)求a的值及直线l的直角坐标方程;
(2)曲线
的极坐标方程为
.若
与
交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列
中,
,
,
分别是下表第一、二、三行中的某一个数,且其中的任何两个数不在下表的同一列.
第一列 | 第二列 | 第三列 | |
第一行 | 5 | 8 | 2 |
第二行 | 4 | 3 | 12 |
第三行 | 16 | 6 | 9 |
(1)请选择一个可能的
组合,并求数列
的通项公式;
(2)记(1)中您选择的
的前
项和为
,判断是否存在正整数
,使得
,
,
成等比数列,若有,请求出
的值;若没有,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在矩形
中,
分别在
上,且
,沿
将四边形
折成四边形
,使点
在平面
上的射影
在直线
上
![]()
![]()
(1)求证:平面
平面
;
(2)求证:
平面
;
(3)求二面角
的正弦值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com