【题目】平面直角坐标系
中,曲线
的参数方程为
(
为参数),以原点为极点,
轴为非负半轴建立极坐标系,直线
的极坐标方程为
.
(1)求直线
的直角坐标方程和曲线
的普通方程;
(2)求直线
与曲线
交于两点
,线段
的中点的横坐标为
,求
的值.
科目:高中数学 来源: 题型:
【题目】如图所示,已知椭圆:
(
)的离心率为
,右准线方程是直线l:
,点P为直线l上的一个动点,过点P作椭圆的两条切线![]()
,切点分别为AB(点A在x轴上方,点B在x轴下方).
![]()
(1)求椭圆的标准方程;
(2)①求证:分别以![]()
为直径的两圆都恒过定点C;
②若
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
的内角
所对的边分别为
,_________,且
.现从:①
,②
,③
这三个条件中任选一个,补充在以上问题中,并判断这样的
是否存在,若存在,求
的面积
_________;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的普通方程和曲线
的直角坐标方程;
(2)若点
在曲线
上,点
在曲线
上,求
的最小值及此时点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】春节过后,甲、乙、丙三人谈论到有关
部电影
,
,
的情况.
甲说:我没有看过电影
,但是有
部电影我们三个都看过;
乙说:三部电影中有
部电影我们三人中只有一人看过;
丙说:我和甲看的电影有
部相同,有
部不同.
假如他们都说的是真话,则由此可判断三部电影中乙看过的部数是( )
A.
部B.
部C.
部D.
部或
部
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解春季昼夜温差大小与某种子发芽数之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了明天昼夜温差与每天100颗种子浸泡后的发芽数,得到如下表格:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
温差x/℃ | 10 | 11 | 13 | 12 | 8 |
发芽数y/颗 | 23 | 25 | 30 | 26 | 16 |
从这5天中任选2天,记发芽的种子数分别为
,求事件“
君不小于25”的概率;
(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5填中的另三天的数据,求出
关于
的线性回归方程,
.
(参考公式:
,
).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com