【题目】已知函数f(x)=Asin(ωx+φ),x∈R(其中
)的图象与x轴的交点中,相邻两个交点之间的距离为
,且图象上一个最低点为
. (Ⅰ)求f(x)的解析式;
(Ⅱ)当
,求f(x)的值域.
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn , 已知S2=4,an+1=2Sn+1,n∈N* .
(1)求通项公式an;
(2)求数列{|an﹣n﹣2|}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阅读下列一段材料,然后解答问题:对于任意实数x,符号[x]表示“不超过x的最大整数”,在数轴上,当x是整数,[x]就是x,当x不是整数时,[x]是点x左侧的第一个整数点,这个函数叫做“取整函数”,也叫高斯(Gauss)函数.如[﹣2]=﹣2,[﹣1.5]=﹣2,[2.5]=2.求[log2
]+[log2
]+[log2
]+[log21]+[log22]+[log23]+[log24]的值为( )
A.-1
B.-2
C.0
D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校有学生2000人,其中高二学生630人,高三学生720人.为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本.则样本中高一学生的人数为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1所示,在边长为24的正方形
中,点
在边
上,且
,
,作
分别交
、
于点
,作
分别交
于点
,将该正方形沿
折叠,使得
与
重合,构成如图2所示的三棱柱
.
![]()
(1)求证:
平面
;
(2)求多面体
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直棱柱ABC﹣A1B1C1中,AC=BC=CC1=
AB,E是线段CC1的中点,连接AE,B1E,AB1 , B1C,BC1 , 得到的图形如图所示. (Ⅰ)证明BC1⊥平面AB1C;
(Ⅱ)求二面角E﹣AB1﹣C的大小.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 ![]()
(1)求函数f(x)的最小正周期和最大值,并求出x为何值时,f(x)取得最大值;
(2)求函数f(x)在[﹣2π,2π]上的单调增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知首项都是1的两个数列{an},{bn}
满足anbn+1﹣an+1bn﹣2an+1an=0.
(1)令
,求证数列{cn}为等差数列;
(2)若
,求数列{bn}的前n项和Sn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com