(1)求a、b的值与函数f(x)的单调区间;
(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围.
解:(1)f(x)=x3+ax2+bx+c,f′(x)=3x2+2ax+b.
由f′(-
)=
-
a+b=0,f′(1)=3+2a+b=0得
a=
,b=-2.
f′(x)=3x2-x-2=(3x+2)(x-1),函数f(x)的单调区间如下表:
x | (-∞,- | - | (- | 1 | (1,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | ?↗ | 极大值 | ?↙ | 极小值 | ↗? |
所以函数f(x)的递增区间是(-∞,-
)与(1,+∞),
递减区间是(-
,1).
(2)f(x)=x3
x2-2x+c,x∈[-1,2],当x=-
时,f(x)=
+c为极大值,而f(2)=2+c,则f(2)=2+c为最大值.
要使f(x)<c2(x∈[-1,2])恒成立,只需c2>f(2)=2+c.
解得c<-1或c>2.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| x |
| a |
| b |
| x |
| 4c2 |
| k(k+c) |
查看答案和解析>>
科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022
已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.
查看答案和解析>>
科目:高中数学 来源:上海模拟 题型:解答题
| x |
| a |
| b |
| x |
| 4c2 |
| k(k+c) |
查看答案和解析>>
科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com