精英家教网 > 高中数学 > 题目详情
设F1,F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为(  )
A.B.C.D.
C
如图所示,设直线x=a与x轴的交点为Q,

由题意可知,
∠F2F1P=∠F1PF2=30°,
|PF2|=|F1F2|=2c,
∴∠PF2Q=60°,∠F2PQ=30°.
∴|F2Q|=|PF2|.
a-c=·2c,
∴e==.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:+=1(a>b>0)的焦距为4,且过点P(,).
(1)求椭圆C的方程;
(2)设Q(x0,y0)(x0y0≠0)为椭圆C上一点.过点Q作x轴的垂线,垂足为E.取点A(0,2),连接AE,过点A作AE的垂线交x轴于点D.点G是点D关于y轴的对称点,作直线QG,问这样作出的直线QG是否与椭圆C一定有唯一的公共点?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点的椭圆C的一个焦点为F(4,0),长轴端点到较近焦点的距离为1,A(x1,y1),B(x2,y2)(x1≠x2)为椭圆上不同的两点.
(1)求椭圆C的方程.
(2)若x1+x2=8,在x轴上是否存在一点D,使||=||?若存在,求出D点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的中心在原点,对称轴为坐标轴,且长轴长是短轴长的2倍.又点P(4,1)在椭圆上,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的左、右焦点坐标分别是(-,0),(,0),离心率是.直线y=t与椭圆C交于不同的两点M,N,以线段MN为直径作圆P,圆心为P.
(1)求椭圆C的方程;
(2)若圆P与x轴相切,求圆心P的坐标;
(3)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆+=1上有两个动点P、Q,E(3,0),EP⊥EQ,则·的最小值为(  )
A.6B.3-C.9D.12-6

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1、F2是椭圆C:+=1(a>b>0)的两个焦点,P为椭圆C上一点,且,若△PF1F2的面积为9,则b=    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的焦点分别为,点在椭圆上,如果线段的中点在轴上,那么               

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两定点A(1,1),B(-1,-1),动点P(x,y)满足·,则点P的轨迹是(  )
A.圆B.椭圆C.双曲线D.拋物线

查看答案和解析>>

同步练习册答案