精英家教网 > 高中数学 > 题目详情
设椭圆的中心在原点,对称轴为坐标轴,且长轴长是短轴长的2倍.又点P(4,1)在椭圆上,求该椭圆的方程.
=1或=1
设该椭圆的方程为=1或=1(a>b>0),依题意,2a=2(2b) a=2b.由于点P(4,1)在椭圆上,所以=1或=1.解得b2=5或,这样a2=20或65,故该椭圆的方程为=1或=1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知是椭圆的两个焦点,为坐标原点,点在椭圆上,且,⊙是以为直径的圆,直线与⊙相切,并且与椭圆交于不同的两点

(1)求椭圆的标准方程;
(2)当,且满足时,求弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的方程为=1(a>b>0),双曲线=1的两条渐近线为l1、l2,过椭圆C的右焦点F作直线l,使l⊥l1.又l与l2交于P点,设l与椭圆C的两个交点由上至下依次为A、B(如图).

(1)当l1与l2夹角为60°,双曲线的焦距为4时,求椭圆C的方程;
(2)当=λ,求λ的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:=1(a>b>0)经过点M(-2,-1),离心率为.过点M作倾斜角互补的两条直线分别与椭圆C交于异于M的另外两点P、Q.
(1)求椭圆C的方程;
(2)试判断直线PQ的斜率是否为定值,证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1、F2分别是椭圆=1(a>b>0)的左、右焦点,A、B分别是此椭圆的右顶点和上顶点,P是椭圆上一点,O是坐标原点,OP∥AB,PF1⊥x轴,F1A=,则此椭圆的方程是________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1、F2分别是椭圆=1(a>b>0)的左、右焦点,若在直线x=上存在点P,使线段PF1的中垂线过点F2,则椭圆的离心率的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知焦点在轴上的椭圆,其离心率为,则实数的值是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1,F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设Ρ是椭圆上的点.若F1、F2是椭圆的两个焦点,则|PF1|+|PF2|=________.

查看答案和解析>>

同步练习册答案