精英家教网 > 高中数学 > 题目详情
已知椭圆C:=1(a>b>0)经过点M(-2,-1),离心率为.过点M作倾斜角互补的两条直线分别与椭圆C交于异于M的另外两点P、Q.
(1)求椭圆C的方程;
(2)试判断直线PQ的斜率是否为定值,证明你的结论.
(1)=1.(2)PQ的斜率为定值1
(1)由题设,得=1,①且,②
由①、②解得a2=6,b2=3,故椭圆C的方程为=1.
(2)设直线MP的斜率为k,则直线MQ的斜率为-k,
假设∠PMQ为直角,则k·(-k)=-1,即k=±1.
若k=1,则直线MQ的方程为y+1=-(x+2),与椭圆C方程联立,得x2+4x+4=0,
该方程有两个相等的实数根-2,不合题意;
同理,若k=-1也不合题意.故∠PMQ不可能为直角.记P(x1,y1)、Q(x2,y2).
设直线MP的方程为y+1=k(x+2),与椭圆C的方程联立,得(1+2k2)x2+(8k2-4k)x+8k2-8k-4=0,
则-2,x1是该方程的两根,则-2x1,即x1.
设直线MQ的方程为y+1=-k(x+2),同理得x2.
因y1+1=k(x1+2),y2+1=-k(x2+2),
故kPQ=1,
因此直线PQ的斜率为定值.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两焦点在轴上, 且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形
(1)求椭圆的方程;
(2)过点的动直线交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点Q,使得以AB为直径的圆恒过点Q?若存在求出点Q的坐标;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过原点O作两条相互垂直的直线分别与椭圆P:交于A、C与B、D, 则四边形ABCD面积最小值为______________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以双曲线-3x2+y2=12的焦点为顶点,顶点为焦点的椭圆的方程是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知动点在椭圆上,若点坐标为,,且的最小值是(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l经过点(1,0)且一个方向向量d=(1,1).椭圆C:=1(m>1)的左焦点为F1.若直线l与椭圆C交于A,B两点,满足·=0,求实数m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的中心在原点,对称轴为坐标轴,且长轴长是短轴长的2倍.又点P(4,1)在椭圆上,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的左、右焦点坐标分别是(-,0),(,0),离心率是.直线y=t与椭圆C交于不同的两点M,N,以线段MN为直径作圆P,圆心为P.
(1)求椭圆C的方程;
(2)若圆P与x轴相切,求圆心P的坐标;
(3)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1、F2是椭圆C:=1(a>b>0)的两个焦点,P为椭圆C上一点,且.若△PF1F2的面积为9,则b=________.

查看答案和解析>>

同步练习册答案