精英家教网 > 高中数学 > 题目详情
设F1、F2分别是椭圆=1(a>b>0)的左、右焦点,若在直线x=上存在点P,使线段PF1的中垂线过点F2,则椭圆的离心率的取值范围是________.
≤e<1
设P,线段F1P的中点Q的坐标为,则直线F1P的斜率kF1P=,当直线QF2的斜率存在时,设直线QF2的斜率为kQF2(b2-2c2≠0),由kF1P·kQF2=-1得y2≥0,但注意到b2-2c2≠0,故2c2-b2>0,即3c2-a2>0,即e2,故<e<1.当直线QF2的斜率不存在时,y=0,F2为线段PF1的中点.由-c=2c得e=,综上得≤e<1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.

(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆的“准圆”上的动点,过点作椭圆的切线交“准圆”于点.
(ⅰ)当点为“准圆”与轴正半轴的交点时,求直线的方程,
并证明
(ⅱ)求证:线段的长为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两焦点在轴上, 且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形
(1)求椭圆的方程;
(2)过点的动直线交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点Q,使得以AB为直径的圆恒过点Q?若存在求出点Q的坐标;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,F为椭圆的右焦点,M、N两点在椭圆C上,且=λ(λ>0),定点A(-4,0).
(1)求证:当λ=1时,
(2)若当λ=1时,有·,求椭圆C的方程..

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,若,且.
(1)求动点的轨迹的方程;
(2)已知定点,若斜率为的直线过点并与轨迹交于不同的两点,且对于轨迹上任意一点,都存在,使得成立,试求出满足条件的实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:+=1(a>b>0)的焦距为4,且过点P(,).
(1)求椭圆C的方程;
(2)设Q(x0,y0)(x0y0≠0)为椭圆C上一点.过点Q作x轴的垂线,垂足为E.取点A(0,2),连接AE,过点A作AE的垂线交x轴于点D.点G是点D关于y轴的对称点,作直线QG,问这样作出的直线QG是否与椭圆C一定有唯一的公共点?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的中心在原点,对称轴为坐标轴,且长轴长是短轴长的2倍.又点P(4,1)在椭圆上,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系xOy中,已知椭圆的左焦点为F,直线x-y-1=0,x-y+1=0与椭圆分别相交于点A,B,C,D,则AF+BF+CF+DF=     

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1、F2是椭圆C:=1(a>b>0)的两个焦点,P为椭圆C上一点,且.若△PF1F2的面积为9,则b=________.

查看答案和解析>>

同步练习册答案