精英家教网 > 高中数学 > 题目详情
已知椭圆C:=1(a>b>0)的离心率为,F为椭圆的右焦点,M、N两点在椭圆C上,且=λ(λ>0),定点A(-4,0).
(1)求证:当λ=1时,
(2)若当λ=1时,有·,求椭圆C的方程..
(1)见解析(2)=1
(1)证明:设M(x1,y1),N(x2,y2),F(c,0),则=(c-x1,-y1),=(x2-c,y2).当λ=1时,,∴-y1=y2,x1+x2=2c.∵M、N两点在椭圆C上,∴=a2=a2,∴.若x1=-x2,则x1+x2=0≠2c(舍去),∴x1=x2,∴=(0,2y2),=(c+4,0),∴·=0,∴.
(2)解:当λ=1时,由(1)知x1=x2=c,
∴M,N,∴
·=(c+4)2.(*)
,∴a2c2,b2,代入(*)式得c2+8c+16=,∴c=2或c=-(舍去).∴a2=6,b2=2,∴椭圆C的方程为=1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:()的短轴长为2,离心率为
(1)求椭圆C的方程
(2)若过点M(2,0)的引斜率为的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足(O为坐标原点),当时,求实数的取值范围?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若两曲线在交点P处的切线互相垂直,则称该两曲线在点P处正交,设椭圆与双曲线在交点处正交,则椭圆的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的左焦点为F,右顶点为A,动点M为右准线上一点(异于右准线与x轴的交点),设线段FM交椭圆C于点P,已知椭圆C的离心率为,点M的横坐标为.

(1)求椭圆C的标准方程;
(2)设直线PA的斜率为k1,直线MA的斜率为k2,求k1·k2的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆=1(a>b>0),F1、F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.

(1)若∠F1AB=90°,求椭圆的离心率;
(2)若=2·,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1、F2分别是椭圆=1(a>b>0)的左、右焦点,若在直线x=上存在点P,使线段PF1的中垂线过点F2,则椭圆的离心率的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

离心率为的椭圆与双曲线有相同的焦点,且椭圆长轴的端点,短轴的端点,焦点到双曲线的一条渐近线的距离依次构成等差数列,则双曲线的离心率等于(      )
A    B.   C.    D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点F1、F2分别是椭圆x2+2y2=2的左、右焦点,点P是该椭圆上的一个动点,则的最小值是    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程=1表示椭圆,则k的取值范围是________.

查看答案和解析>>

同步练习册答案