精英家教网 > 高中数学 > 题目详情
若两曲线在交点P处的切线互相垂直,则称该两曲线在点P处正交,设椭圆与双曲线在交点处正交,则椭圆的离心率为(  )
A.B.C.D.
C

试题分析:由已知得,代入中,得.
不妨设在第一象限,则.
将椭圆变形为,故椭圆在P处的切线的斜率
将双曲线变形为,故双曲线在P处的切线的斜率
,将代入得,,又∵,∴
.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的焦距为,过右焦点和短轴一个端点的直线的斜率为为坐标原点.
(1)求椭圆的方程.
(2)设斜率为的直线相交于两点,记面积的最大值为,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设A1、A2与B分别是椭圆E:=1(a>b>0)的左、右顶点与上顶点,直线A2B与圆C:x2+y2=1相切.
(1)求证:=1;
(2)P是椭圆E上异于A1、A2的一点,若直线PA1、PA2的斜率之积为-,求椭圆E的方程;
(3)直线l与椭圆E交于M、N两点,且·=0,试判断直线l与圆C的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两焦点在轴上, 且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形
(1)求椭圆的方程;
(2)过点的动直线交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点Q,使得以AB为直径的圆恒过点Q?若存在求出点Q的坐标;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形ABCD内接于椭圆=1(a>b>0),且它的四条边与坐标轴平行,正方形MNPQ的顶点M、N在椭圆上,顶点P、Q在正方形的边AB上,且A、M都在第一象限.
 
(1)若正方形ABCD的边长为4,且与y轴交于E、F两点,正方形MNPQ的边长为2.
①求证:直线AM与△ABE的外接圆相切;
②求椭圆的标准方程;
(2)设椭圆的离心率为e,直线AM的斜率为k,求证:2e2-k是定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,F为椭圆的右焦点,M、N两点在椭圆C上,且=λ(λ>0),定点A(-4,0).
(1)求证:当λ=1时,
(2)若当λ=1时,有·,求椭圆C的方程..

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:=1(a>b>0)的一个顶点为A(2,0),离心率为.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为时,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线D的顶点是椭圆C:=1的中心,焦点与该椭圆的右焦点重合.
(1)求抛物线D的方程;
(2)过椭圆C右顶点A的直线l交抛物线D于M、N两点.
①若直线l的斜率为1,求MN的长;
②是否存在垂直于x轴的直线m被以MA为直径的圆E所截得的弦长为定值?如果存在,求出m的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

分别为椭圆的左、右焦点,点在椭圆上,若,则点的坐标是__________

查看答案和解析>>

同步练习册答案