精英家教网 > 高中数学 > 题目详情
如图,正方形ABCD内接于椭圆=1(a>b>0),且它的四条边与坐标轴平行,正方形MNPQ的顶点M、N在椭圆上,顶点P、Q在正方形的边AB上,且A、M都在第一象限.
 
(1)若正方形ABCD的边长为4,且与y轴交于E、F两点,正方形MNPQ的边长为2.
①求证:直线AM与△ABE的外接圆相切;
②求椭圆的标准方程;
(2)设椭圆的离心率为e,直线AM的斜率为k,求证:2e2-k是定值.
(1)①见解析②=1(2)见解析
(1)证明:①依题意:A(2,2),M(4,1),E(0,-2),∴=(2,-1),=(-2,-4),∴·=0,∴AM⊥AE.
∵AE为Rt△ABE外接圆直径,∴直线AM与△ABE的外接圆相切.
②解:由解得椭圆标准方程为=1.
(2)证明:设正方形ABCD的边长为2s,正方形MNPQ的边长为2t,则A(s,s),M(s+2t,t),代入椭圆方程=1,得 
∴e2=1-.∵k=,∴2e2-k=2为定值.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆=1(a>b>0)的离心率为,短轴的一个端点为M(0,1),直线l:y=kx-与椭圆相交于不同的两点A、B.
(1)若AB=,求k的值;
(2)求证:不论k取何值,以AB为直径的圆恒过点M.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点P为共焦点的椭圆和双曲线的一个交点,分别是它们的左右焦点.设椭圆离心率为,双曲线离心率为,若,则(    )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若两曲线在交点P处的切线互相垂直,则称该两曲线在点P处正交,设椭圆与双曲线在交点处正交,则椭圆的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线C与椭圆=1有相同的焦点,直线y=x为C的一条渐近线.求双曲线C的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的左焦点为F,右顶点为A,动点M为右准线上一点(异于右准线与x轴的交点),设线段FM交椭圆C于点P,已知椭圆C的离心率为,点M的横坐标为.

(1)求椭圆C的标准方程;
(2)设直线PA的斜率为k1,直线MA的斜率为k2,求k1·k2的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆=1(a>b>0),F1、F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.

(1)若∠F1AB=90°,求椭圆的离心率;
(2)若=2·,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1:+=1(a>b>0)的右顶点为A(1,0),过C1的焦点且垂直长轴的弦长为1.

(1)求椭圆C1的方程;
(2)设点P在抛物线C2:y=x2+h(h∈R)上,C2在点P处的切线与C1交于点M,N.当线段AP的中点与MN的中点的横坐标相等时,求h的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程=1表示椭圆,则k的取值范围是________.

查看答案和解析>>

同步练习册答案