(本小题满分12分)如图,三棱柱
的各棱长均为2,侧面![]()
底面
,侧棱
与底面
所成的角为
.
(1) 求直线
与底面
所成的角;
(2) 在线段
上是否存在点
,使得平面
平面
?若存在,求出
的长;若不存在,请说明理由。
![]()
(1)
;(2)
。
【解析】
试题分析:(1)根据题意建立空间直角坐标系,然后表示平面的法向量和直线的斜向量,进而利用向量的夹角公式得到线面角的求解。
(2)假设存在点满足题意,然后利用向量的垂直关系,得到点的坐标。
解:(1)
作
于
,
∵侧面![]()
平面
,
![]()
则
,
,
,
,
,![]()
∴
,又底面
的法向量
…4分
设直线
与底面
所成的角为
,则
,∴![]()
所以,直线
与底面
所成的角为
. …6分
(2)设在线段
上存在点
,设
=
,
,则
…7分
设平面
的法向量![]()
令
…9分
设平面
的法向量![]()
令
…10分
要使平面
平面
,则![]()
…12分
考点:本题主要是考查线面角的求解,以及面面垂直的探索性命题的运用。
点评:解决该试题的关键是合理的建立空间直角坐标系,正确的表示点的坐标,得到平面的法向量和斜向量,进而结合数量积的知识来证明垂直和求解角的问题。
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com