精英家教网 > 高中数学 > 题目详情
在正方体ABCD-A1B1C1D1中,给出以下向量表达式:
①(
A1D1
-
A1A
)-
AB

②(
BC
+
BB1
)-
D1C1

③(
AD
-
AB
)-2
DD1

④(
B1D1
+
A1A
)+
DD1

其中能够化简为向量
BD1
的是(  )
A.①②B.②③C.③④D.①④
(
A1D1
-
A1A
)-
AB
=
AD1
-
AB
=
BD1

②(
BC
+
BB1
)-
D1C1
=
BC1
+
C1D1
=
BD1

(
AD
-
AB
)-2
DD1
=
BD
-2
DD1
BD1

(
B1D1
+
A1A
)+
DD1
=
B1D
+
DD1
=
B1D1
BD1

综上①②符合题意.
故选A.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E在底面ABCD内的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上结论正确的为
①③④
.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E为D′C′的中点,则二面角E-AB-C的大小为
45°
45°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E,F分别是AB′,BC′的中点. 
(1)若M为BB′的中点,证明:平面EMF∥平面ABCD.
(2)求异面直线EF与AD′所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在正方体ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H为垂足,则B1H与平面AD1C的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交棱AA′于E,交棱CC′于F,则:
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E有可能是菱形;
④四边形BFD′E有可能垂直于平面BB′D.
其中所有正确结论的序号是
 

查看答案和解析>>

同步练习册答案