精英家教网 > 高中数学 > 题目详情
设函数f(x)=x+
alnxx
,其中a为常数.
(1)证明:对任意a∈R,y=f(x)的图象恒过定点;
(2)当a=-1时,判断函数y=f(x)是否存在极值?若存在,求出极值;若不存在,说明理由;
(3)若对任意a∈(0,m]时,y=f(x)恒为定义域上的增函数,求m的最大值.
分析:(1)令lnx=0得到x=1=f(x)得到函数过定点;
(2)当a=-1时求出函数的导函数观察发现x=1时g(x)=0且为唯一根,根据x的范围讨论函数的增减性得到x=1是函数的唯一极值点,求出f(1)即为最小值;(3)y=f(x)恒为定义域上的增函数即要证f/(x)f/(x)=1+
a-alnx
x2
=
x2-alnx+a
x2
大于零,利用导数研究函数h(x)=x2-alnx+a的最小值都比0大即可.
解答:解:(1)令lnx=0,得x=1,且f(1)=1,
所以y=f(x)的图象过定点(1,1);
(2)当a=-1时,f(x)=x-
lnx
x
f/(x)=1-
1-lnx
x2
=
x2+lnx-1
x2

令g(x)=x2+lnx-1,经观察得g(x)=0有根x=1,下证明g(x)=0无其它根.g/(x)=2x+
1
x

当x>0时,g/(x)>0,即y=g(x)在(0,+∞)上是单调递增函数.
所以g(x)=0有唯一根x=1;
且当x∈(0,1)时,f/(x)=
g(x)
x2
<0
,f(x)在(0,1)上是减函数;
当x∈(1,+∞)时,f/(x)=
g(x)
x2
>0
,f(x)在(1,+∞)上是增函数
所以x=1是f(x)的唯一极小值点.极小值是f(1)=1-
ln1
1
=1

(3)f/(x)=1+
a-alnx
x2
=
x2-alnx+a
x2
,令h(x)=x2-alnx+a
由题设,对任意a∈(0,m],有h(x)≥0,x∈(0,+∞),
h/(x)=
2x2-a
x
=
2(x-
a
2
)(x+
a
2
)
x

x∈(0,
a
2
)
时,h/(x)<0,h(x)是减函数;
x∈(
a
2
,+∞)
时,h/(x)>0,h(x)是增函数;
所以当x=
a
2
时,h(x)有极小值,也是最小值h(
a
2
)=(
3
2
-ln
a
2
)a

又由h(x)≥0得(
3
2
-ln
a
2
)a≥0
,得a≤2e3,即m的最大值为2e3
点评:考查学生利用导数研究函数的单调性及研究函数极值的能力,以及应用函数单调性的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
(p是实数,e为自然对数的底数)
(1)若f(x)在其定义域内为单调函数,求p的取值范围;
(2)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p的值;
(3)若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+1)≥f(x),则称f(x)为M上的高调函数.现给出下列三个命题:
①函数f(x)=(
12
)x
为R上的l高调函数;
②函数f(x)=sin2x为R上的π高调函数;
③如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围[2,+∞);
其中正确的命题是
②③
②③
(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案