【题目】如图,在四棱锥中,为正三角形,,,,平面.
(Ⅰ)若为棱的中点,求证:平面;
(Ⅱ)若,求点到平面的距离.
科目:高中数学 来源: 题型:
【题目】已知点,点在轴上,点在轴的正半轴上,点在直线上,且满足
(Ⅰ)当点在轴上移动时,求点的轨迹的方程;
(Ⅱ)过点做直线与轨迹交于两点,若在轴上存在一点,使得是以点为直角顶点的直角三角形,求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,以为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的标准方程;
(2)已知点,和平面内一点,过点任作直线与椭圆相交于两点,设直线的斜率分别为,,试求满足的关系式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象上有一点列,点在轴上的射影是,且 (且), .
(1)求证: 是等比数列,并求出数列的通项公式;
(2)对任意的正整数,当时,不等式恒成立,求实数的取值范围.
(3)设四边形的面积是,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:
摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.
(1)摸出的3个球为白球的概率是多少?
(2)摸出的3个球为2个黄球1个白球的概率是多少?
(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】20名同学参加某次数学考试成绩(单位:分)的频率分布直方图如下:
(Ⅰ)求频率分布直方图中的值;
(Ⅱ)分别求出成绩落在, 中的学生人数;
(Ⅲ)从成绩在的学生中任选2人,求此2人的成绩都在中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)-log3|x|的零点个数是( )
A.多于4个 B.4个
C.3个 D.2个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com