精英家教网 > 高中数学 > 题目详情
数列{an}满足a1=
3
2
,an+1=an2-an+1(n∈N*),Sn为数列{
1
an
}
的前n项和,则S2012∈(  )
分析:由已知a1=
3
2
,an+1=an2-an+1(n∈N*),可得an+1-an>0,得到数列{an}单调递增.再变形为an+1-1=an(an-1),即
1
an+1-1
=
1
an-1
-
1
an
,也即
1
an
=
1
an-1
-
1
an+1-1
.利用“裂项求和”可得m,再利用其单调性即可得出S2012所属于的区间.
解答:解:∵a1=
3
2
,an+1=an2-an+1(n∈N*),∴an+1-an=(an-1)2>0,∴an+1>an,∴数列{an}单调递增.
∴an+1-1=an(an-1)>0,
1
an+1-1
=
1
an-1
-
1
an
,∴
1
an
=
1
an-1
-
1
an+1-1

∴Sn=
1
a1
+
1
a2
+…+
1
an
=(
1
a1-1
-
1
a2-1
)+(
1
a2-1
-
1
a3-1
)
+…+(
1
an-1
-
1
an+1-1
)

=
1
a1-1
-
1
an+1-1

S2012=
1
3
2
-1
-
1
a2013-1
=2-
1
a2013-1

a1=
3
2
,∴a2=(
3
2
)2-
3
2
+1
=
7
4
,∴a3=(
7
4
)2-
7
4
+1
=
7
4
×
3
4
+1=
21
16
+1>2

∴a2013>a3>2,∴0<
1
a2013-1
<1
,∴1<2-
1
a2013-1
<2

∴S2012∈(1,2).
故选B.
点评:本题考查了通过恰当变形转化为“裂项求和”、数列的单调性等基础知识与基本技能方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设b>0,数列{an}满足a1=b,an=
nban-1an-1+n-1
(n≥2)
(1)求数列{an}的通项公式;
(4)证明:对于一切正整数n,2an≤bn+1+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}满足a1=1,a2=2,an=
an-1an-2
(n≥3)
,则a17等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,数列{an}满足a1=a,an+1=a+
1
an
,n=1,2,….

(I)已知数列{an}极限存在且大于零,求A=
lim
n→∞
an
(将A用a表示);
(II)设bn=an-A,n=1,2,…,证明:bn+1=-
bn
A(bn+A)

(III)若|bn|≤
1
2n
对n=1,2,…
都成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=1,an=
12
an-1+1(n≥2)

(1)若bn=an-2,求证{bn}为等比数列;    
(2)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=
4
3
,an+1=an2-an+1(n∈N*),则m=
1
a1
+
1
a2
+…+
1
a2013
的整数部分是(  )

查看答案和解析>>

同步练习册答案