【题目】已知函数
的最大值为2。
(1)求函数
在
上的单调递减区间。
(2)
中,若角
所对的边分别是
且满足
, 边
,及
,求
的面积。
【答案】(1)
;(2)![]()
【解析】
(1)将f(x)解析式利用两角和与差的正弦函数公式化为一个角的正弦函数,由正弦函数的值域表示出f(x)的最大值,由已知最大值为2列出关于m的方程,求出方程的解得到m的值,进而确定出f(x)的解析式,由正弦函数的递减区间为[2kπ+
,2kπ+
](k∈Z),列出关于x的不等式,求出不等式的解集即可得到f(x)在[0,π]上的单调递减区间;(2)由(1)确定的f(x)解析式化简f(A﹣
)+f(B﹣
)=4
sinAsinB,再利用正弦定理化简,得出a+b=
ab①,利用余弦定理得到(a+b)2﹣3ab﹣9=0②,将①代入②求出ab的值,再由sinC的值,利用三角形的面积公式即可求出三角形ABC的面积.
(1)f(x)=msinx+
cosx=
sin(x+θ)(其中sinθ=
,cosθ=
),
∴f(x)的最大值为
,
∴
=2,
又m>0,∴m=
,
∴f(x)=2sin(x+
),
令2kπ+
≤x+
≤2kπ+
(k∈Z),解得:2kπ+
≤x≤2kπ+
(k∈Z),
则f(x)在[0,π]上的单调递减区间为[
,π];
(2)设△ABC的外接圆半径为R,由题意C=60°,c=3,得
=
=
=
=2
,
化简f(A﹣
)+f(B﹣
)=4
sinAsinB,得sinA+sinB=2
sinAsinB,
由正弦定理得:
+
=2
×
,即a+b=
ab①,
由余弦定理得:a2+b2﹣ab=9,即(a+b)2﹣3ab﹣9=0②,
将①式代入②,得2(ab)2﹣3ab﹣9=0,
解得:ab=3或ab=﹣
(舍去),
则S△ABC=
absinC=
.
科目:高中数学 来源: 题型:
【题目】已知集合M={(x,y)|y=f(x)},若对于任意(x1 , y1)∈M,存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:
①M={
};
②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};
④M={(x,y)|y=ex﹣2}.
其中是“垂直对点集”的序号是( )
A.①②
B.②③
C.①④
D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中错误的个数为:( )
①
的图像关于点
对称;②
的图像关于点
对称;
③
的图像关于直线
对称;④
的图像关于直线
对称。
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
:
,直线
.
(1)若直线
与圆
相切,求
的值;
(2)若直线
与圆
交于不同的两点
,当∠AOB为锐角时,求k的取值范围;
(3)若
,
是直线
上的动点,过
作圆
的两条切线
,切点为
,探究:直线
是否过定点。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下列四个命题:
①若tan θ=2,则sin 2θ=
;
②函数f(x)=lg(x+
)是奇函数;
③“a>b”是“2a>2b”的充分不必要条件;
④在△ABC中,若sin Acos B=sin C,则△ABC是直角三角形.
其中所有真命题的序号是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,且此函数图象过点(1,5).
(1)求实数m的值;
(2)判断f(x)奇偶性;
(3)讨论函数f(x)在[2,+∞)上的单调性?并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com