【题目】在△ABC中,角A,B,C的对边分别为a,b,c,
asinB+bcosA=c. (Ⅰ)求B;
(Ⅱ)若a=2
c,S△ABC=2
,求b.
【答案】解:(Ⅰ)由题意得,
asinB+bcosA=c, 由正弦定理得
sinAsinB+sinBcosA=sinC
所以
sinAsinB+sinBcosA=sin(A+B),
即
sinAsinB=sinAcosB,
由sinA≠0得,
sinB=cosB,则tanB=
,
又0<B<π,所以B=30°.
(Ⅱ)由(Ⅰ)和a=2
c得,
S△ABC=
acsinB=
c2=2
,解得c=2,a=4
.
由余弦定理得b2=a2+c2﹣
ac=28,
所以b=2 ![]()
【解析】(Ⅰ)由正弦定理化简已知的式子,由内角的范围和特殊角的三角函数值求出B;(Ⅱ)根据条件和三角形的面积公式求出c、a,再由余弦定理求出b.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:
;余弦定理:
;
;
才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知直线l1:3x+2y﹣1=0和l2:5x+2y+1=0的交点为A
(1)若直线l3:(a2﹣1)x+ay﹣1=0与l1平行,求实数a的值;
(2)求经过点A,且在两坐标轴上截距相等的直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北偏东30°,俯角为30°的B处,到11时10分又测得该船在岛北偏西60°,俯角为60°的C处. ![]()
(1)求船的航行速度是每小时多少千米?
(2)又经过一段时间后,船到达海岛的正西方向的D处,问此时船距岛A有多远?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
上的点到两个焦点的距离之和为
,短轴长为
,直线
与椭圆
交于
、
两点.
(1)求椭圆
的方程;
(2)若直线
与圆
相切,探究
是否为定值,如果是定值,请求出该定值;如果不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面内一动点
与两定点
和
连线的斜率之积等于
.
(Ⅰ)求动点
的轨迹
的方程;
(Ⅱ)设直线
:
(
)与轨迹
交于
、
两点,线段
的垂直平分线交
轴于点
,当
变化时,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某保险公司针对企业职工推出一款意外险产品,每年每人只要交少量保费,发生意外后可一次性获赔50万元.保险公司把职工从事的所有岗位共分为
、
、
三类工种,根据历史数据统计出三类工种的每赔付频率如下表(并以此估计赔付概率).
![]()
![]()
(Ⅰ)根据规定,该产品各工种保单的期望利润都不得超过保费的20%,试分别确定各类工种每张保单保费的上限;
(Ⅱ)某企业共有职工20000人,从事三类工种的人数分布比例如图,老板准备为全体职工每人购买一份此种保险,并以(Ⅰ)中计算的各类保险上限购买,试估计保险公司在这宗交易中的期望利润.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com