精英家教网 > 高中数学 > 题目详情
已知正项等比数列{an}共有2n项,且a1a4=9(a3+a4),a1+a2+…+a2n=4(a2+a4+…+a2n),则a1=
36
36
,公比q=
1
3
1
3
分析:设a2+a4+…+a2n=x,根据等比数列的通项可知a1+a3+…+a2n-1=
x
q
,代入已知条件即可求出公比;利用等比数列的通项公式得出a12q3=9a1q2(1+q),将q的值代入即可求出首项.
解答:解:设a2+a4+…+a2n=x
则a1+a2+…+a2n═(a1+a3+…+a2n-1)+(a2+a4+…+a2n)=
x
q
+x=3x
整理得
1
q
=3
解得:q=
1
3

∵a1a4=9(a3+a4
∴a12q3=9a1q2(1+q)
整理得:a1q=9(1+q)
∴a1=36
故答案为:36;
1
3
点评:此题考查了等比数列的通项公式以及性质,设出a2+a4+…+a2n=x是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正项等比数列{an}中,a1=1,a3a7=4a62,则S6=(  )
A、
61
32
B、
31
16
C、
63
32
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项等比数列{an}满足:a7=a6+2a5,若存在两项am,an使得
aman
=4a1,则
1
m
+
1
n
的最小值为(  )
A、
2
3
B、
5
3
C、
25
6
D、不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•锦州二模)已知正项等比数列{an}满足:a3=a2+2a1,若存在两项am,an,使得
aman
=4a1
,则
1
m
+
4
n
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项等比数列{an}中,a4•a5=8,则log2a1+log2a2+…+log2a8的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项等比数列{an}的前n项和为Sn,若S3=3,S9-S6=12,则S6=(  )
A、9
B、
21
2
C、18
D、39

查看答案和解析>>

同步练习册答案