精英家教网 > 高中数学 > 题目详情
tan3、tan4、tan5的大小顺序是
 
(用“<”连结)
考点:正切函数的单调性
专题:计算题,函数的性质及应用,三角函数的图像与性质
分析:利用正切函数的性质可得tan3<0,tan4>0,tan5<0,再根据正切函数y=tanx在(
2
,2π)单调递增可判断.
解答: 解:由
π
2
<3<π,得tan3<0,由π<4<
2
,得tan4>0,由
2
<5<2π,得tan5<0,
根据正切函数的性质可得:y=tanx在(
2
,2π)上单调递增,
由tan3=tan(3+π),则由
2
<5<3+π<2π,可得tan5<tan(3+π)=tan3,
故答案为:tan5<tan3<tan4.
点评:本题主要考查了利用正切函数的性质及函数的单调性比较正切值的大小,考查基本知识的简单运用,属于基础试题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=aln(2x+1)+bx+1.
(1)若函数y=f(x)在x=1处取得极值,且曲线y=f(x)在点(0,f(0))处的切线与直线2x+y-3=0平行,求a和b的值;
(2)若b=
1
2
,试讨论函数y=f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

空间直线a、b、c,平面α,则下列命题中真命题的是(  )
A、若a⊥b,c⊥b,则a∥c
B、若a∥α,b∥α,则a∥b
C、若a与b是异面直线,a与c是异面直线,则b与c也是异面直线
D、若a∥c,c⊥b,则b⊥a

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,已知B=60°,
(1)若a=(
3
-1)c,求角A的大小;
(Ⅱ)若b=1,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+sin(
π
2
x),若有四个不同的正数xi满足f(xi)=M,且xi<8(i=1,2,3,4),则x1+x2+x3+x4等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log
1
2
|sinx|.
(1)求其定义域和值域;
(2)判断其奇偶性;
(3)求其周期;
(4)写出单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(1+sinx)=2+sinx+cos2x,则函数f(x)的解析式为f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:在x∈[1,2]时,不等式x2+ax-2>0恒成立;命题q:函数f(x)=x3+ax在[1,+∞)上是增函数.若命题“p∨q”是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=|x|(x-1)-k有三个零点,则k的取值范围是
 

查看答案和解析>>

同步练习册答案