精英家教网 > 高中数学 > 题目详情
(2012•湖北模拟)设函数f(x)=ln(x+a)-x2
(1)若a=0,求f(x)在(0,m](m>0)上的最大值g(m).
(2)若f(x)在区间[1,2]上为减函数,求a的取值范围.
(3)若直线y=x为函数f(x)的图象的一条切线,求a的值.
分析:(1)由f(x)=lnx-x2,x>0,令f′(x)=
1
x
-2x=
1-2x2
x
>0
,得0<x<
2
2
,故f(x)在(0,
2
2
)
为增函数,同理可得f(x)在(
2
2
,+∞)
为减函数,由此能求出f(x)在(0,m](m>0)上的最大值g(m).
(2)由f(x)在[1,2]上为减函数,知x∈[1,2]有x+a>0恒成立,故a>-1.再由x∈[1,2],f′(x)=
1
x+a
-2x≤0
恒成立⇒a≥
1
2x
-x
,能求出a的取值范围.
(3)设切点为P(x0,x0)则f′(x0)=1⇒
1
x0+a
-2x0=1⇒x0+a=
1
1+2x0
,且f(x0)=x0ln(x0+a)-x02=x0,由此能求出a的值.
解答:解:(1)f(x)=lnx-x2,x>0,
f′(x)=
1
x
-2x=
1-2x2
x
>0

0<x<
2
2

∴f(x)在(0,
2
2
)
为增函数,
同理可得f(x)在(
2
2
,+∞)
为减函数,
0<m<
2
2
时,f(x)最大值为g(m)=f(m)=lnm-m2
m≥
2
2
时,f(x)最大值为g(m)=f(
2
2
)=ln
2
2
-
1
2

综上:g(m)=
lnm-m2,0<m<
2
2
ln
2
2
-
1
2
,m≥
2
2
.(4分)
(2)∵f(x)在[1,2]上为减函数
∴x∈[1,2]有x+a>0恒成立⇒a>-1
x∈[1,2],f′(x)=
1
x+a
-2x≤0
恒成立⇒a≥
1
2x
-x

y=
1
2x
-x
在[1,2为减函数],
a≥-
1
2
,又a>-1
a≥-
1
2
为所求. (4分)
(3)设切点为P(x0,x0),
f′(x0)=1⇒
1
x0+a
-2x0=1⇒x0+a=
1
1+2x0

f(x0)=x0ln(x0+a)-x02=x0
ln
1
1+2x0
-x02=x0

即:x0+x02+ln(1+2x0)=0
再令h(x)=x+x2+ln(1+2x),x>-
1
2

h′(x)=1+2x+
2
1+2x
>0

∴h(x)在为增函数,又h(0)=0,
∴h(x0)=0?x0=0.
则a=1为所求. (5分)
点评:本题考查函数最大值的求法,求a的取值范围,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湖北模拟)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上有一个顶点到两个焦点之间的距离分别为3+2
2
3-2
2

(1)求椭圆的方程;
(2)如果直线x=t(t∈R)与椭圆相交于A,B,若C(-3,0),D(3,0),证明直线CA与直线BD的交点K必在一条确定的双曲线上;
(3)过点Q(1,0)作直线l(与x轴不垂直)与椭圆交于M、N两点,与y轴交于点R,若
RM
MQ
RN
NQ
,证明:λ+μ为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)在△ABC中,M是BC的中点,AM=3,点P在AM上,且满足
AP
=2
PM
,则
PA
•(
PB
+
PC
)
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)已知函数y=g(x)的图象由f(x)=sin2x的图象向右平移φ(0<φ<π)个单位得到,这两个函数的部分图象如图所示,则φ=
π
3
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)设Sn是等比数列{an}的前n项和,若S1,2S2,3S3成等差数列,则公比q等于
1
3
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)函数f(x)=aex,g(x)=lnx-lna,其中a为正常数,且函数y=f(x)和y=g(x)的图象在其与坐标轴的交点处的切线互相平行.
(1)求a的值;
(2)若存在x使不等式
x-m
f(x)
x
成立,求实数m的取值范围;
(3)对于函数y=f(x)和y=g(x)公共定义域中的任意实数x0,我们把|f(x0)-g(x0)|的值称为两函数在x0处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.

查看答案和解析>>

同步练习册答案