精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱锥P﹣ABC中,PA=PC,底面ABC为正三角形.
(Ⅰ)证明:AC⊥PB;
(Ⅱ)若平面PAC⊥平面ABC,AC=PC=2,求二面角A﹣PC﹣B的余弦值.

【答案】(Ⅰ)证明:如图,

取AC中点O,连接PO,BO,
∵PA=PC,∴PO⊥AC,
又∵底面ABC为正三角形,∴BO⊥AC,
∵PO∩OB=O,∴AC⊥平面POB,则AC⊥PB;
(Ⅱ)解:∵平面PAC⊥平面ABC,且平面PAC∩平面ABC=AC,
PO⊥AC,∴PO⊥平面ABC,
以O为原点,分别以OA、OB、OP所在直线为x、y、z轴建立空间直角坐标系,
∵AC=PC=2,∴P(0,0, ),B(0, ,0),C(﹣1,0,0),

设平面PBC的一个法向量为
,取y=﹣1,得
是平面PAC的一个法向量,
∴cos< >=
∴二面角A﹣PC﹣B的余弦值为
【解析】(Ⅰ)取AC中点O,连接PO,BO,由等腰三角形的性质可得PO⊥AC,BO⊥AC,再由线面垂直的判定可得AC⊥平面POB,则AC⊥PB;(Ⅱ)由平面PAC⊥平面ABC,且平面PAC∩平面ABC=AC,可得PO⊥平面ABC,以O为原点,分别以OA、OB、OP所在直线为x、y、z轴建立空间直角坐标系,然后分别求出平面PBC与平面PAC的一个法向量,利用两法向量所成角的余弦值求得二面角A﹣PC﹣B的余弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 的定义域为R.
(Ⅰ)求m的取值范围;
(Ⅱ)若m的最大值为n,解关于x的不等式:|x﹣3|﹣2x≤2n﹣4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx﹣ax﹣3(a∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2(f'(x)+ )在区间(t,3)上总不是单调函数,求m的取值范围;
(Ⅲ)求证: × × ×…× (n≥2,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|sinx|(x∈[﹣π,π]),g(x)=x﹣2sinx(x∈[﹣π,π]),设方程f(f(x))=0,f(g(x))=0,g(g(x))=0的实根的个数分别为m,n,t,则m+n+t=(
A.9
B.13
C.17
D.21

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[不等式选讲]

设函数f(x)=a(x﹣1).
(Ⅰ)当a=1时,解不等式|f(x)|+|f(﹣x)|≥3x;
(Ⅱ)设|a|≤1,当|x|≤1时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 R上的奇函数, ,且对任意 都有 成立,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年1月某校高三年级1600名学生参加了教育局组织的期末统考,已知数学考试成绩X~N(100,σ2)(试卷满分为150分).统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的 ,则此次统考中成绩不低于120分的学生人数约为(
A.80
B.100
C.120
D.200

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xoy 中,直线l的参数方程为 ,(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点o为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=4cosθ. (Ⅰ)求圆C在直角坐标系中的方程;
(Ⅱ)若圆C与直线l相切,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣1|+|2x﹣3|,x∈R.
(1)解不等式f(x)≤5;
(2)若不等式m2﹣m<f(x),x∈R都成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案