精英家教网 > 高中数学 > 题目详情
已知椭圆过点,上、下焦点分别为
向量.直线与椭圆交于两点,线段中点为
(1)求椭圆的方程;
(2)求直线的方程;
(3)记椭圆在直线下方的部分与线段所围成的平面区域(含边界)为,若曲线
与区域有公共点,试求的最小值.
(1)(2)(3)

试题分析:[解](1)
解得:,椭圆方程为
(2)①当斜率不存在时,由于点不是线段的中点,所以不符合要求;
②设直线方程为,代入椭圆方程整理得

 
解得
所以直线
(3)化简曲线方程得:,是以为圆心,为半径的圆。当圆与直线相切时,,此时为,圆心
由于直线与椭圆交于
故当圆过时,最小。此时,
点评:关于曲线的大题,第一问一般是求出曲线的方程,第二问常与直线结合起来,当涉及到交点时,常用到根与系数的关系式:)。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:  (a>b>0)的两个焦点和短轴的两个端点都在圆上.
(I)求椭圆C的方程;
(II)若斜率为k的直线过点M(2,0),且与椭圆C相交于A, B两点.试探讨k为何值时,三角形OAB为直角三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(5分)从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别是椭圆:的左、右焦点,过倾斜角为的直线 与该椭圆相交于P,两点,且.
(Ⅰ)求该椭圆的离心率;
(Ⅱ)设点 满足,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆上有两个动点,则的最小值为(  )
A.6B.C.9D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为分别为椭圆的左、右焦点,若椭圆的焦距为2.
⑴求椭圆的方程;
⑵设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线有公共点时,求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的左、右焦点分别为,若椭圆上恰好有6个不同的点,使得为等腰三角形,则椭圆的离心率的取值范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的一个焦点是,那么    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点分别是椭圆)的左顶点和上顶点,椭圆的左右焦点分别是,点是线段上的动点,如果的最大值是,最小值是,那么,椭圆的的标准方程是                   .

查看答案和解析>>

同步练习册答案