精英家教网 > 高中数学 > 题目详情
(5分)从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是(  )
A.B.C.D.
C
依题意,设P(﹣c,y0)(y0>0),
+=1,
∴y0=
∴P(﹣c,),
又A(a,0),B(0,b),AB∥OP,
∴kAB=kOP,即==
∴b=c.
设该椭圆的离心率为e,则e2====
∴椭圆的离心率e=
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,点到两点的距离之和等于4,设点的轨迹为,直线交于两点.
(1)写出的方程;
(2) ,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.
(1)求抛物线和椭圆的标准方程;
(2)过点的直线交抛物线两不同点,交轴于点,已知,则
是否为定值?若是,求出其值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是双曲线的两个顶点,点是双曲线上异于的一点,连接为坐标原点)交椭圆于点,如果设直线的斜率分别为,且,假设,则的值为(  )
A.1B.C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

秒“嫦娥二号”探月卫星由长征三号丙运载火箭送入近地点高度约公里、远地点高度约万公里的直接奔月椭圆(地球球心为一个焦点)轨道Ⅰ飞行。当卫星到达月球附近的特定位置时,实施近月制动及轨道调整,卫星变轨进入远月面公里、近月面公里(月球球心为一个焦点)的椭圆轨道Ⅱ绕月飞行,之后卫星再次择机变轨进入以为圆心、距月面公里的圆形轨道Ⅲ绕月飞行,并开展相关技术试验和科学探测。已知地球半径约为公里,月球半径约为公里。
(Ⅰ)比较椭圆轨道Ⅰ与椭圆轨道Ⅱ的离心率的大小;
(Ⅱ)以为右焦点,求椭圆轨道Ⅱ的标准方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于x轴,垂足为T,与抛物线交于不同的两点P、Q且.
(1)求点T的横坐标
(2)若以F1,F2为焦点的椭圆C过点.
①求椭圆C的标准方程;
②过点F2作直线l与椭圆C交于A,B两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆C:的左、右焦点分别为,P是C上的点,
=,则C的离心率为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,上、下焦点分别为
向量.直线与椭圆交于两点,线段中点为
(1)求椭圆的方程;
(2)求直线的方程;
(3)记椭圆在直线下方的部分与线段所围成的平面区域(含边界)为,若曲线
与区域有公共点,试求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,且离心率
(1)求椭圆的标准方程;
(2)是否存在过点的直线交椭圆于不同的两点MN,且满足(其中点O为坐标原点),若存在,求出直线的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案