精英家教网 > 高中数学 > 题目详情
已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.
(1)求抛物线和椭圆的标准方程;
(2)过点的直线交抛物线两不同点,交轴于点,已知,则
是否为定值?若是,求出其值;若不是,说明理由.
(1) ,;(2)-1.

试题分析:(1)根据抛物线的焦点坐标满足圆的方程确定等量关系,求解抛物线方程;根据椭圆的焦点和右定点也在圆上,确定椭圆方程;(2)利用已知的向量关系式进行坐标转化求出,然后通过直线与抛物线方程联立,借助韦达定理进行化简并求值.
试题解析:(1)由抛物线的焦点在圆上得:,∴抛物线                           3分
同理由椭圆的上、下焦点及左、右顶点均在圆上可解得:
得椭圆.                                              6分
(2)是定值,且定值为-1.
设直线的方程为,则
联立方程组,消去得:
   ,                        9分
得:
整理得:,
.               14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:  (a>b>0)的两个焦点和短轴的两个端点都在圆上.
(I)求椭圆C的方程;
(II)若斜率为k的直线过点M(2,0),且与椭圆C相交于A, B两点.试探讨k为何值时,三角形OAB为直角三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C: 的左、右焦点分别为,离心率为,点A是椭圆上任一点,的周长为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点任作一动直线l交椭圆C于两点,记,若在线段上取一点R,使得,则当直线l转动时,点R在某一定直线上运动,求该定直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,左焦点为
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与曲线交于不同的两点,且线段的中点在圆 上,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的左、右焦点分别为F1、F2,上顶点为A,△AF1F2为正三角形,且以线段F1F2为直径的圆与直线相切.
(Ⅰ)求椭圆C的方程和离心率e;
(Ⅱ)若点P为焦点F1关于直线的对称点,动点M满足. 问是否存在一个定点T,使得动点M到定点T的距离为定值?若存在,求出定点T的坐标及此定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆的右焦点与抛物线的焦点重合,则的值为     (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(5分)从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别是椭圆:的左、右焦点,过倾斜角为的直线 与该椭圆相交于P,两点,且.
(Ⅰ)求该椭圆的离心率;
(Ⅱ)设点 满足,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的一个焦点是,那么    .

查看答案和解析>>

同步练习册答案