精英家教网 > 高中数学 > 题目详情
已知椭圆的离心率为,左焦点为
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与曲线交于不同的两点,且线段的中点在圆 上,求的值.
(Ⅰ);(Ⅱ).

试题分析:(Ⅰ)利用离心率和直线与焦点坐标得到两个等量关系,确定椭圆方程;(Ⅱ)利用直线与圆联立,借助韦达定理和中点坐标M在圆上建立等量关系.
试题解析:(Ⅰ)由题意得                               2分
解得                                     4分
所以椭圆C的方程为:                              6分
(Ⅱ)设点的坐标分别为,线段的中点为
,消去y得                8分
,∴                          9分
                          10分
∵点 在圆上,∴,即  13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆:)上任意一点到两焦点距离之和为,离心率为,左、右焦点分别为,点是右准线上任意一点,过作直 线的垂线交椭圆于点.

(1)求椭圆的标准方程;
(2)证明:直线与直线的斜率之积是定值;
(3)点的纵坐标为3,过作动直线与椭圆交于两个不同点,在线段上取点,满足,试证明点恒在一定直线上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.
(1)求抛物线和椭圆的标准方程;
(2)过点的直线交抛物线两不同点,交轴于点,已知,则
是否为定值?若是,求出其值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,短轴的一个端点到右焦点的距离为,直线交椭圆于不同的两点
(1)求椭圆的方程;
(2)若坐标原点到直线的距离为,求面积的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过点作一直线与椭圆相交于A、B两点,若点恰好为弦的中点,则所在直线的方程为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是双曲线的两个顶点,点是双曲线上异于的一点,连接为坐标原点)交椭圆于点,如果设直线的斜率分别为,且,假设,则的值为(  )
A.1B.C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的离心率为,顶点与椭圆的焦点相同,那么双曲线的焦点坐标为_____;渐近线方程为_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

秒“嫦娥二号”探月卫星由长征三号丙运载火箭送入近地点高度约公里、远地点高度约万公里的直接奔月椭圆(地球球心为一个焦点)轨道Ⅰ飞行。当卫星到达月球附近的特定位置时,实施近月制动及轨道调整,卫星变轨进入远月面公里、近月面公里(月球球心为一个焦点)的椭圆轨道Ⅱ绕月飞行,之后卫星再次择机变轨进入以为圆心、距月面公里的圆形轨道Ⅲ绕月飞行,并开展相关技术试验和科学探测。已知地球半径约为公里,月球半径约为公里。
(Ⅰ)比较椭圆轨道Ⅰ与椭圆轨道Ⅱ的离心率的大小;
(Ⅱ)以为右焦点,求椭圆轨道Ⅱ的标准方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆C:的左、右焦点分别为,P是C上的点,
=,则C的离心率为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案