精英家教网 > 高中数学 > 题目详情
如图,已知椭圆C: 的左、右焦点分别为,离心率为,点A是椭圆上任一点,的周长为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点任作一动直线l交椭圆C于两点,记,若在线段上取一点R,使得,则当直线l转动时,点R在某一定直线上运动,求该定直线的方程.
(Ⅰ);(Ⅱ).

试题分析:(Ⅰ)利用三角形的周长为及离心率可求解;(Ⅱ)利用寻找的坐标与实数之间的关系,再利用关系找到点R的坐标为()与之间的关系,化简求解.
试题解析:(Ⅰ)∵的周长为
.         (1分)
解得     (3分)
∴椭圆C的方程为           (4分)
(Ⅱ)由题意知,直线l的斜率必存在,
设其方程为

            (6分)
             (7分)
,得
.             (8分)
设点R的坐标为(),由


解得     (10分)


                  (13分)
故点R在定直线上.                   (14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆中心在坐标原点,是它的两个顶点,直线与直线相交于点D,与椭圆相交于两点.
(Ⅰ)若,求的值;
(Ⅱ)求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知,直线与线段分别交于点.

(1)当时,求以为焦点,且过中点的椭圆的标准方程;
(2)过点作直线于点,记的外接圆为圆.
①求证:圆心在定直线上;
②圆是否恒过异于点的一个定点?若过,求出该点的坐标;若不过,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的对称中心为坐标原点,上焦点为,离心率.

(Ⅰ)求椭圆的方程;
(Ⅱ)设轴上的动点,过点作直线与直线垂直,试探究直线与椭圆的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的四个顶点恰好是一边长为2,一内角为的菱形的四个顶点.
(I)求椭圆的方程;
(II)直线与椭圆交于两点,且线段的垂直平分线经过点,求为原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.
(1)求抛物线和椭圆的标准方程;
(2)过点的直线交抛物线两不同点,交轴于点,已知,则
是否为定值?若是,求出其值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是双曲线的两个顶点,点是双曲线上异于的一点,连接为坐标原点)交椭圆于点,如果设直线的斜率分别为,且,假设,则的值为(  )
A.1B.C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于x轴,垂足为T,与抛物线交于不同的两点P、Q且.
(1)求点T的横坐标
(2)若以F1,F2为焦点的椭圆C过点.
①求椭圆C的标准方程;
②过点F2作直线l与椭圆C交于A,B两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是椭圆的左焦点,直线方程为,直线轴交于点,分别为椭圆的左右顶点,已知,且
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点且斜率为的直线交椭圆于两点,求三角形面积.

查看答案和解析>>

同步练习册答案