精英家教网 > 高中数学 > 题目详情
已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于x轴,垂足为T,与抛物线交于不同的两点P、Q且.
(1)求点T的横坐标
(2)若以F1,F2为焦点的椭圆C过点.
①求椭圆C的标准方程;
②过点F2作直线l与椭圆C交于A,B两点,求的取值范围.
(1)
(2)

试题分析:解:(1)由题意得,设
.

,①                       2分
在抛物线上,则,②
联立①、②易得                                      4分
(2)①设椭圆的半焦距为,由题意得
设椭圆的标准方程为
   ③ ,         ④               5分
将④代入③,解得(舍去)
所以                                          6分
故椭圆的标准方程为                             7分
②. (ⅰ)当直线的斜率不存在时,
,所以            8分
(ⅱ)当直线的斜率存在时,设直线的方程为

,则由根与系数的关系,
可得:                    9分
因为,所以


       11分
,因为,即
所以
所以                                   13分
综上所述:.                             14分
点评:主要是考查了直线与圆的位置关系的运用属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C: 的左、右焦点分别为,离心率为,点A是椭圆上任一点,的周长为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点任作一动直线l交椭圆C于两点,记,若在线段上取一点R,使得,则当直线l转动时,点R在某一定直线上运动,求该定直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的左、右焦点分别为F1、F2,上顶点为A,△AF1F2为正三角形,且以线段F1F2为直径的圆与直线相切.
(Ⅰ)求椭圆C的方程和离心率e;
(Ⅱ)若点P为焦点F1关于直线的对称点,动点M满足. 问是否存在一个定点T,使得动点M到定点T的距离为定值?若存在,求出定点T的坐标及此定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是2和8的等比中项,则圆锥曲线的离心率是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(5分)从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知椭圆的中心在原点,焦点在轴上,短轴长为,离心率为.
(I)求椭圆的方程;
(II) 为椭圆上满足的面积为的任意两点,为线段的中点,射线交椭圆与点,设,求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别是椭圆:的左、右焦点,过倾斜角为的直线 与该椭圆相交于P,两点,且.
(Ⅰ)求该椭圆的离心率;
(Ⅱ)设点 满足,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为分别为椭圆的左、右焦点,若椭圆的焦距为2.
⑴求椭圆的方程;
⑵设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线有公共点时,求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点是椭圆上一点,为椭圆的一个焦点,且轴,焦距,则椭圆的离心率是(     )
A.B.-1C.-1D.

查看答案和解析>>

同步练习册答案