精英家教网 > 高中数学 > 题目详情
1.已知随机变量ξ服从正态分布N(1,σ2),若p(ξ>3)=0.023,则p(-1≤ξ≤3)等于0.954.

分析 根据随机变量ξ服从正态分布,知正态曲线的对称轴是x=1,且P(ξ>3)=0.023,依据正态分布对称性,即可求得答案.

解答 解:随机变量ξ服从正态分布N(1,σ2),
∴曲线关于x=1对称,
∵P(ξ>3)=0.023,
∴P(-1≤ξ≤3)=1-2P(ξ>3)=1-0.046=0.954.
故答案为:0.954.

点评 本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和Sn,且满足2Sn=nan+3n,(n∈N*)且S2=8.
(1)求a1,a2,a3的值;
(2)证明数列{an}是等差数列,并求数列{an}的通项公式;
(3)求证:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义在R上的函数y=f(x)是减函数,且对任意的a∈R,都有f(-a)+f(a)=0,若x、y满足不等式f(x2-2x)+f(2y-y2)≤0,则当1≤x≤4时,x-2y的最小值为(  )
A.-4B.-1C.0D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.四面体ABCD,设AB=2,CD=3异面直线AB与CD间的距离为1且相垂直,则四面体ABCD的体积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.命题“对任意x>0,都有2x>1”的否定是存在x>0,有2x≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.两直线3x-4y-3=0和6x-8y+19=0之间的距离为(  )
A.2B.$\frac{3}{2}$C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知等比数列{an}的公比q=$\frac{1}{3}$,且a1+a3+a5+…+a99=66,则其前100项和和S100=88.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,设$\overrightarrow{AB}$=$\overrightarrow a}$,$\overrightarrow{AC}$=$\overrightarrow b$,若点D满足$\overrightarrow{BD}$=2$\overrightarrow{DC}$,则$\overrightarrow{AD}$=(  )
A.$\frac{1}{3}\overrightarrow a}$+$\frac{2}{3}$$\overrightarrow b$B.$\frac{5}{3}\overrightarrow a}$-$\frac{2}{3}$$\overrightarrow b$C.-$\frac{1}{3}\overrightarrow a}$+$\frac{2}{3}$$\overrightarrow b$D.$\frac{2}{3}\overrightarrow a}$+$\frac{1}{3}$$\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x2-a|+|x-a|(a≥1),
(1)当a=1时,试求函数f(x)单调区间,并求函数在[-2,2]上的最值;
(2)若f(x)=k有两个不相等的实数根,求实数k的取值范围.

查看答案和解析>>

同步练习册答案