精英家教网 > 高中数学 > 题目详情
11.命题“?x0∈R,sinx0+2x02>cosx0”的否定为?x∈R,sinx+2x2≤cosx.

分析 直接利用特称命题的否定是全称命题写出结果即可.

解答 解:因为特称命题的否定是全称命题,所以,命题“?x0∈R,sinx0+2x02>cosx0”的否定为:?x∈R,sinx+2x2≤cosx.
故答案为:?x∈R,sinx+2x2≤cosx.

点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知复数Z满足Z•(1-2i)=5i,则复数Z在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在数列{an}中,a1=a,a∈Z,an+1=$\left\{\begin{array}{l}{{a}_{n}^{2}-5,{a}_{n}为奇数}\\{\frac{{a}_{n}}{2},{a}_{n}为偶数}\end{array}\right.$.
(1)若a=1,求a2,a3,a4
(2)若?n∈N*,均有an+3=an成立,求满足题意的整数a构成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=-x2+2x+b2-b-3(b∈R),若当x∈[-1,1]时,f(x)>0恒成立,则b的取值范围是(-∞,-2)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到一些统计量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2$\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.656.36.8289.81.61469108.8
表中wi=$\sqrt{{x}_{i}}$,$\overline{w}$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(I)根据表中数据,求回归方程y=c+d$\sqrt{x}$;
(II)已知这种产品的年利润z与x,y的关系为z=0.2y-x,根据( II)的结果回答下列问题:
(i)当年宣传费x=90时,年销售量及年利润的预报值时多少?
(ii)当年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归线$\stackrel{∧}{v}$=α+βu的斜率和截距的最小二乘估计分别为:
$\stackrel{∧}{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\stackrel{∧}{α}$=$\overline{v}$-β$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\frac{asinx}{1+cosx}$在点(0,0)处的切线方程为y=2x,则a=(  )
A.1B.2C.4D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知XN(-1,σ2),若P(-3≤X≤-1)=0.4,则P(-3≤X≤1)=(  )
A.0.4B.0.8C.0.6D.无法计算

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知0<a<1,k≠0,函数f(x)=$\left\{{\begin{array}{l}{{a^x},x≥0}\\{kx+1,x<0}\end{array}}$,若函数g(x)=f(x)-k有两个零点,则实数k的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)=$\left\{\begin{array}{l}-{x^2}-2x,x≤0\\{log_2}(x+1),x>0\end{array}$,则f(f(-1))=1.

查看答案和解析>>

同步练习册答案