精英家教网 > 高中数学 > 题目详情
3.已知XN(-1,σ2),若P(-3≤X≤-1)=0.4,则P(-3≤X≤1)=(  )
A.0.4B.0.8C.0.6D.无法计算

分析 观察正态曲线得,由数形结合思想可求得P(-3≤x≤1)的值.

解答 解:∵XN(-1,σ2),P(-3≤X≤-1)=0.4
∴画出正态曲线如下图:

根据对称性,由图可得,P(-3≤x≤1)=0.8.
故选:B.

点评 本题考查正态分布中概率的求法,图中μ就是数学期望.它恰好是曲线最高点的横坐标,直线 就是曲线的对称轴,可见μ决定了正态分布密度曲线的位置.随机变量X的大部分的值都集中在μ的附近,从曲线的图形可以直观地看出随机变量的这个特征.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.解不等式$\sqrt{{x}^{2}-x-6}$<x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算:
(1)-22÷(-$\frac{27}{8}$)${\;}^{-\frac{1}{3}}$-(0.7)lg1+log34-log312;
(2)lg5(lg8+lg1000)+(lg2${\;}^{\sqrt{3}}$)2+lg$\frac{1}{6}$+lg0.06.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.命题“?x0∈R,sinx0+2x02>cosx0”的否定为?x∈R,sinx+2x2≤cosx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=asinx+bcosx满足f(x+$\frac{2π}{3}$)=f(-x)对x∈R恒成立,则要得到g(x)=2sin2x的图象,只需把f(x)的图象(  )
A.向右平移$\frac{π}{6}$,横坐标缩短为原来的$\frac{1}{2}$
B.向右平移$\frac{π}{6}$,横坐标伸长为原来的2倍
C.向右平移$\frac{π}{3}$,横坐标缩短为原来的$\frac{1}{2}$
D.向右平移$\frac{π}{3}$,横坐标伸长为原来的2倍

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=-$\frac{{x}^{2}+4x+7}{x+1}$,g(x)=log3x+3x(x≤1),实数a,b满足a<b<-1,若?x1∈[a,b],?x2∈(0,+∞),使得f(x1)=g(x2)成立,则b-a的最大值为(  )
A.4B.2$\sqrt{3}$C.2$\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=$\frac{{{{log}_2}({3-x})}}{{\sqrt{{x^2}-1}}}$的定义域为(-∞,-1)∪(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若复数z满足($\overline{z}$+i)(1+i)=2,则z在复平面内对应的点所在的象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)是可导的函数,且f′(x)<f(x)对于x∈R恒成立,则(  )
A.f(1)<ef(0),f(2 014)>e2014f(0)B.f(1)>ef(0),f(2 014)>e2014f(0)
C.f(1)>ef(0),f(2 014)<e2014f(0)D.f(1)<ef(0),f(2 014)<e2014f(0)

查看答案和解析>>

同步练习册答案