精英家教网 > 高中数学 > 题目详情
13.已知f(x)是可导的函数,且f′(x)<f(x)对于x∈R恒成立,则(  )
A.f(1)<ef(0),f(2 014)>e2014f(0)B.f(1)>ef(0),f(2 014)>e2014f(0)
C.f(1)>ef(0),f(2 014)<e2014f(0)D.f(1)<ef(0),f(2 014)<e2014f(0)

分析 构造函数g(x)=$\frac{f(x)}{{e}^{x}}$,利用导数判断其单调性即可得出.

解答 解:令g(x)=$\frac{f(x)}{{e}^{x}}$,则g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$<0.
∴函数g(x)在R上单调递减.
∴g(1)<g(0),g(2014)<g(0).
即$\frac{f(1)}{e}<\frac{f(0)}{1}$,$\frac{f(2014)}{{e}^{2014}}<\frac{f(0)}{1}$,
化为f(1)<ef(0),f(2014)<e2014f(0).
故选:D

点评 本题是一个知识点交汇的综合题,考查综合运用函数思想解题的能力.恰当构造函数g(x)=$\frac{f(x)}{{e}^{x}}$,利用导数判断其单调性是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知XN(-1,σ2),若P(-3≤X≤-1)=0.4,则P(-3≤X≤1)=(  )
A.0.4B.0.8C.0.6D.无法计算

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=1,|$\overrightarrow{a}$-$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$+2$\overrightarrow{b}$|=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)=$\left\{\begin{array}{l}-{x^2}-2x,x≤0\\{log_2}(x+1),x>0\end{array}$,则f(f(-1))=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知(1+2i)2=a+bi(a,b∈R,i是虚数单位),则a+b=(  )
A.1B.-1C.-3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=x3+cos($\frac{π}{2}$-x)+1,若f(a)=2,则f(-a)的值为(  )
A.3B.0C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)求证:函数y=x+$\frac{a}{x}$有如下性质:如果常数a>0,那么该函数在(0,$\sqrt{a}$]上是减函数,在[$\sqrt{a}$,+∞)上是增函数.
(2)若f(x)=$\frac{{4{x^2}-12x-3}}{2x+1}$,x∈[0,1],利用上述性质,求函数f(x)的值域;
(3)对于(2)中的函数f(x)和函数g(x)=-x-2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1),求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知p:-x2+4x+32≥0,q:x2-2x+1-m2≤0(m>0).
(1)若p是q的充分不必要条件,求实数m的取值范围.
(2)若“¬p”是“¬q”的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某三棱锥的三视图如图,该三棱锥的体积是(  )
A.2B.$\frac{2}{3}$C.$\frac{4}{3}$D.1

查看答案和解析>>

同步练习册答案