| A. | 向右平移$\frac{π}{6}$,横坐标缩短为原来的$\frac{1}{2}$ | |
| B. | 向右平移$\frac{π}{6}$,横坐标伸长为原来的2倍 | |
| C. | 向右平移$\frac{π}{3}$,横坐标缩短为原来的$\frac{1}{2}$ | |
| D. | 向右平移$\frac{π}{3}$,横坐标伸长为原来的2倍 |
分析 由题意根据正弦函数的图象的对称性,求得a的值,可得f(x)=2sin(x+$\frac{π}{6}$),再利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.
解答 解:∵函数f(x)=asinx+bcosx满足f(x+$\frac{2π}{3}$)=f(-x)对x∈R恒成立,∴函数f(x)的图象关于直线x=$\frac{π}{3}$对称,
∴f(0)=f($\frac{2π}{3}$) 即 b=$\frac{\sqrt{3}}{2}$a-$\frac{1}{2}$b,求得b=$\frac{\sqrt{3}}{3}$a,f(x)=asinx+$\frac{\sqrt{3}}{3}a$•cosx.
根据题意,2=$\sqrt{{a}^{2}+\frac{{a}^{2}}{3}}$,故可取 a=$\sqrt{3}$,f(x)=$\sqrt{3}$sinx+cosx=2sin(x+$\frac{π}{6}$).
则要得到g(x)=2sin2x的图象,只需把f(x)的图象向右平移$\frac{π}{6}$,横坐标缩短为原来的$\frac{1}{2}$ 即可,
故选:A.
点评 本题主要考查正弦函数的图象的对称性,函数y=Asin(ωx+φ)的图象变换规律,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (x-5)2+(y-3)2=18 | B. | (x-5)2+(y-3)2=9 | C. | (x-3)2+(y-5)2=18 | D. | (x-3)2+(y-5)2=9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| $\overline{x}$ | $\overline{y}$ | $\overline{w}$ | $\sum_{i=1}^{8}$(xi-$\overline{x}$)2 | $\sum_{i=1}^{8}$(wi-$\overline{w}$)2 | $\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$) | $\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$) |
| 46.6 | 56.3 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com