精英家教网 > 高中数学 > 题目详情
14.若函数f(x)=x+alnx不是单调函数,则实数a的取值范围是(  )
A.[0,+∞)B.(-∞,0]C.(-∞,0)D.(0,+∞)

分析 求出函数的定义域,函数的导数,利用导数值求解a的范围.

解答 解:函数f(x)=x+alnx的定义域为:x>0.
函数f(x)=x+alnx的导数为:f′(x)=1+$\frac{a}{x}$,
当a≥0时,f′(x)>0,函数是增函数,
当a<0时,函数f(x)=x+alnx不是单调函数,则实数a的取值范围是(-∞,0).
故选:C.

点评 本题考查函数的导数的应用,函数的单调性,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设命题p:若x=7,y=8,则x+y=15的逆命题,否命题和逆否命题分别是q,r,s四个命题p,q,r,s中真命题是p,s.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.盒子内分别有3个红球,2个白球,1个黑球,从中任取2个,则下列选项中两个事件互斥而不对立的是(  )
A.至少有1个白球,至多有1个白球B.至少有1个白球,至少有1个红球
C.至少有1个白球,没有白球D.至少有1个白球,红、黑球各1个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示.∠AOB=∠BOC=120°,|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|,求,$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=($\frac{1}{2}$)x-m,g(x)=x2.若对?x1∈[-1,3],?x2∈[-1,2],使f(x1)=g(x2)成立,则实数m的取值范围为-2≤m≤$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.符合下列条件的三角形有且只有一个的是(  )
A.a=1,b=2,c=3B.b=c=1,∠B=45°C.a=1,b=2,∠A=100°D.a=1,b=$\sqrt{2},∠A={30°}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.定义数列如下:a1=2,an+1=an2-an+1,n∈N*,求证:
(Ⅰ)对于n∈N*恒有an+1>an成立;
(Ⅱ)1-$\frac{1}{{{2^{2015}}}}<\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2015}}}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.数列{an}的前n项和为Sn=n2-6n,则a2=-3;数列{|an|}的前10项和|a1|+|a2|+…+|a10|=58.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.数列{an}的前n项和${S_n}=\frac{1}{4}{a_n}+1$,则a1+a3+…+a2n-1=$\frac{3}{2}$-$\frac{3}{2}$($\frac{1}{9}$)n

查看答案和解析>>

同步练习册答案