精英家教网 > 高中数学 > 题目详情
(2012•淮北二模)已知定义域为R的函数f(x)满足:f(4)=-3,且对任意x∈R总有f′(x)<3,则不等式f(x)<3x-15的解集为(  )
分析:设F(x)=f(x)-(3x-15)=f(x)-3x+15,则F′(x)=f′(x)-3,由对任意x∈R总有f′(x)<3,知F′(x)=f′(x)-3<0,所以F(x)=f(x)-3x+15在R上是减函数,由此能够求出结果.
解答:解:设F(x)=f(x)-(3x-15)=f(x)-3x+15,
则F′(x)=f′(x)-3,
∵对任意x∈R总有f′(x)<3,
∴F′(x)=f′(x)-3<0,
∴F(x)=f(x)-3x+15在R上是减函数,
∵f(4)=-3,
∴F(4)=f(4)-3×4+15=0,
∵f(x)<3x-15,
∴F(x)=f(x)-3x+15<0,
∴x>4.
故选D.
点评:本题考查利用导数研究函数的单调性的应用,是中档题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•淮北二模)已知命P:a>1,Q:(a-1)(a+1)>0,P是Q成立的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮北二模)已知圆C:x2+y2=1,过点P(0,2)作圆C的切线,交x轴正半轴于点Q、若M(m,n)为线段PQ上的动点,则
3
m
+
1
n
的最小值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮北二模)设f(x)=asin2x+bcos2x,其中a,b∈R,ab≠0.若f(x)≤f(
π
6
)|对一切x∈R恒成立,则
①f(
11π
12
)=0;
②|f(
12
)|<|f(
π
5
)|;
③f(x)既不是奇函数也不是偶函数;
④f(x)的单调递增区间是[kπ+
π
6
,kπ+
3
](k∈Z);
⑤经过点(a,b)的所有直线均与函数f(x)的图象相交.
以上结论正确的是
①③⑤
①③⑤
(写出所有正确结论的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮北二模)在△ABC中a,b,c分别为角A,B,C所对的边的边长.
(1)试叙述正弦或余弦定理并证明之;
(2)设a+b+c=1,求证:a2+b2+c2
13

查看答案和解析>>

同步练习册答案