精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-(m+1)x+m(m∈R).
(1)若tanA,tanB为方程f(x)+4=0的两个实根,并且A,B为锐角,求m的取值范围;
(2)对任意实数a,恒有f(2+cosa)≤0,证明:m≥3.
考点:二次函数的性质,一元二次方程的根的分布与系数的关系
专题:函数的性质及应用
分析:(1)x2-(m+1)x+m+4=0,(m∈R).得出△=m2+2m+1-4m-16=m2-2m-15≥0,m+1>0,m+4>0,求解即可.
(2)运用(2+cosα)2-(m+1)(2+cosα)+m≤0运用,m≥2+cosα,恒成立问题求解.
解答: 解:(1)由f(x)+4=0,
即x2-(m+1)x+m+4=0,(m∈R).
△=m2+2m+1-4m-16=m2-2m-15≥0,
∴m≥5或,m≤-3,
同时,tanA+tanB>0,tanA•tanB>0,
∴m+1>0,m+4>0,得出m>-1,
∴m≥5.
(2)f(2+cosα)=(2+cosα)2-(m+1)(2+cosα)+m≤0,
即m(1+cosα)≥(1+cosα)(2+cosα)
当1+cosα=0时,显然成立,当1+cosα≠0时,m≥2+cosα,
∴m≥3.
点评:本题考查了二次函数的性质,不等式的求解,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
m
+
y2
n
=1与双曲线
x2
p
-
y2
q
=1(m,n,p,q∈R+)有共同的焦点F1、F2,P是椭圆和双曲线的一个交点,则|PF1|•|PF2|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

四条直线y=3x,y=
1
4
x-3,x+y-4=0和x-4y+11=0的交点的个数共有几个?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=log 
1
2
(ax2+2x+a-1)的值域为[0,+∞),则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设x∈R,则“x>
1
2
”是“2x2+x-1>0”的
 
条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
1
2
sin(2x+
π
6
)+
5
4
,x∈R.
(1)当函数值y取最大值时,求自变量x的集合;
(2)该函数图象可由y=sinx,x∈R的图象经过怎样变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:

求定积分:
(1)
3
1
(3x2+
1
x2
)dx;
(2)
1
-1
1
5-4x
dx.

查看答案和解析>>

科目:高中数学 来源: 题型:

P是边长为1的正方形ABCD的对角线BD上一点,且
DP
DB
,若
CP
DB
PD
PB
,则λ的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产一种文具所需支付的费用有三种:
(1)不论生产不生产,都需支付职工工资等固定开支1.25万元;
(2)生产x件产品,所需各种原材料费用,平均每件36元;
(3)由于能源供应的特殊政策,经测算,生产x件产品的能源费为每件ax元(a>0).
已知生产100件产品的能源费为500元.
(1)求a的值
(2)这种文具平均每件生产成本最低是多少元?

查看答案和解析>>

同步练习册答案