精英家教网 > 高中数学 > 题目详情
(2011•乐山一模)已知数列{an}的前n项和Sn=n(n+2),数列{bn}的前n项和为Tn,且有
Tn+1-bn+1
Tn+bn
=1,b1=3

(1)求数列{an},{bn}的通项an,bn
(2)设cn=
an
bn
,试判断数列{cn}的单调性,并证明你的结论.
(3)在(2)的前提下,设Mn是数列{cn}的前n项和,证明:Mn≥4-
n+2
2n-1
分析:(1)根据当n≥2时,an=Sn-Sn-1,可求数列{an}的通项an,根据
Tn+1-bn+1
Tn+bn
=1
,可得bn+1=2bn-1,从而{bn-1}是公比为2的等比数列,故可求数列{bn}的通项bn
(2)cn=
an
bn
=
2n+1
2n+1
,数列{cn}为递减数列,再用作差法证明即可;
(3)根据cn=
an
bn
=
2n+1
2n+1
2n
2n
=
n
2n-1
,可得Mn=c1+c2+…+cn1+
2
2
+
3
22
+…+
n
2n-1
,利用错位相消法,求出右边的和,即可证得结论.
解答:(1)解:∵Sn=n(n+2),
∴当n≥2时,an=Sn-Sn-1=2n+1
当n=1时,a1=S1=3满足上式
∴an=2n+1
Tn+1-bn+1
Tn+bn
=1

∴Tn+1-Tn=2bn-1
∴bn+1=2bn-1
∴bn+1-1=2(bn-1)
∴{bn-1}是公比为2的等比数列
bn-1=(b1-1)•2n-1=2n
bn =2n+1
(2)解:cn=
an
bn
=
2n+1
2n+1
,数列{cn}为递减数列
证明:∵cn+1-cn=
2n+3
2n+1+1
-
2n+1
2n+1

=
(1-2n)•2n+2
(2n+1+1)(2n+1)
<0

∴数列{cn}为递减数列
(3)证明:∵cn=
an
bn
=
2n+1
2n+1
2n
2n
=
n
2n-1

∴Mn=c1+c2+…+cn1+
2
2
+
3
22
+…+
n
2n-1

rn=1+
2
2
+
3
22
+…+
n
2n-1

1
2
r
n
=
1
2
+
2
22
+
3
23
+…+
n
2n

①-②:
1
2
r
n
=1+
1
2
+
1
22
+
1
23
+…+
1
2n-1
-
n
2n
=2-
n+2
2n

rn=4-
n+2
2n-1

1+
2
2
+
3
22
+…+
n
2n-1
=4-
n+2
2n-1

Mn≥4-
n+2
2n-1
点评:本题以数列的和为载体,考查数列的通项,考查数列的单调性,考查不等式的证明,同时考查错位相减法求数列的和,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•乐山一模)若a为实数,且(
a
x
+
x
)9
的展开式中x3的系数为
9
4
,则a=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•乐山一模)公差不为0的等差数列{an}中,4a2011-a20122+4a2013=0,数列{bn}是等比数列,且b2012=a2012,则b2010•b2014=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•乐山一模)某班一学习兴趣小组在开展一次有奖答题活动中,从3道文史题和4道理科题中,不放回地抽取2道题,第一次抽到文史题,第二次也抽到文史题的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•乐山一模)若不等式
a+2x
1+x
≥3
的解集是{x|-6≤x<-1},则实数a等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•乐山一模)甲、乙两人沿着同一方向由A地去B地.甲前一半的路程使用速度v1,后一半的路程使用速度v2;乙前一半的时间使用速度v1,后一半的时间使用速度v2.关于甲、乙二人从A地到达B地的路程与时间的函数图象及关系式(其中横轴t表示时间,纵轴s表示路程,v1<v2)可能正确的图示为(  )

查看答案和解析>>

同步练习册答案